Камерное сжигание топлива в котлах. Способ сжигания топлива

3.2 Горение газообразного топлива

Минимальная температура, при которой происходит воспламенение смеси, называется температурой воспламенения. Значение этой температуры для различных газов неодинаково и зависит от теплофизических свойств горючих газов, содержания горючего в смеси, условий зажигания, условий отвода теплоты в каждом конкретном устройстве и т.д.

Горючий газ в смеси с окислителем сгорает в факеле. Различают два метода сжигания газа в факеле – кинетический и диффузионный. При кинетическом сжигании до начала горения газ предварительно смешивается с окислителем. Газ и окислитель подаются сначала в смешивающее устройство горелки. Горение смеси осуществляется вне пределов смесителя. При этом скорость горения не должна превышать скорости химических реакций горения tгор = tхим.

Диффузионное горение происходит в процессе смешивания горючего газа с воздухом. Газ поступает в рабочий объем отдельно от воздуха. Скорость процесса будет ограничена скоростью смешивания газа с воздухом tгор = tфиз.

Сильной стороной диффузионного метода сжигания можно назвать такие его свойства:

Высокая устойчивость пламени при изменении тепловых нагрузок;

Отсутствие проскока пламени;

Равномерность температуры по длине пламени.

К недостаткам диффузионного этого метода сжигания относятся:

Вероятность термического распада углеводородов;

Потребность в больших топочных объемах;

Низкая интенсивность горения, вероятность неполного сгорания газа.

Кинетический методе сжигания характеризуется тем, что к месту горения подается полностью подготовленная внутри горелки газовоздушная смесь, сгорая в коротком факеле голубым прозрачным конусом. Таким образом, сгорание топлива осуществляется на поверхности этого конуса, который и называется фронт кинетического горения.

К достоинствам такого метода сжигания относят:

Малая вероятность химического недожога;

Небольшая длина пламени;

Высокая температура факела.

Необходимость стабилизации газового пламени является недостатком кинетического метода сжигания газа.

Кроме этого существует смешанное (диффузионно-кинетическое) горение. При этом газ предварительно смешивается с некоторым количеством воздуха, затем полученная смесь поступает в рабочий объем, где отдельно подается остальная часть воздуха.

В топках котельных агрегатов в основном используют кинетический и смешанный способы сжигания топлива.

Газовые горелки могут быть классифицированы по следующим признакам:

а) по длине образующегося факела на длиннопламенные и короткопламенные;

б) по светимости пламени на светящийся или слабосветящийся факел;

в) по теплоте сгорания сжигаемого газа на горелки для высококалорийных и низкокалорийных газов;

г) по давлению перед горелкой на низко- и высоконапорные;

д) по количеству подводящих трубопроводов на одно- и двухпроводные и т. д.

Одним из существенных признаков является способ смешения сжигаемого газа с воздухом, необходимым для горения. По этому признаку горелки можно разделить на следующие три типа:

1) Горелки без предварительного смешения газа с воздухом. Газ и воздух, в необходимом для горения количестве, подаются раздельно через соответствующие каналы горелки. Горючая смесь образуется в факеле в процессе турбулентного смешения газа и воздуха после выхода их из горелки. Для примера в качестве горелки такого типа можно привести трубчатую горелку для низкокалорийных газов (рисунок 1). Газ поступает через газовый коллектор и присоединенные к нему трубы, а воздух через противоположный коллектор в межтрубное пространство. Смешение происходит в струйных потоках на выходе из труб.

Рисунок 1 - Трубчатые горелки для низкокалорийных газов

Эти горелки применяют для сжигания низкокалорийных газов в больших количествах и в печной технике, когда нужно иметь растянутый светящийся факел с более равномерной теплоотдачей по длине рабочего пространства печи.

2) Горелки предварительного смешения. Горелки, работающие по принципу кинетического сжигания, применяют в случаях, когда требуется сжигать газ с высоким тепловым напряжением объема и сечения камеры порядка (10-40) 103 кВт/м 3 к (50-80) 103 кВт/м 2 с минимальным химическим недожогом и с коротким слабосветящимся пламенем. Предварительное смешение осуществляется в смесителях, из которых подготовленная смесь поступает в горелку. К этому типу относятся туннельные и другие типы горелок однородной газовоздушной смеси, получаемой предварительным смешением газа с воздухом в смесителях различной конструкции.

В теплоэнергетике широкое распространение получили инжекционные горелки туннельного типа (рисунок 2), которые обес­печивают авторегулирование постоянного соотношения расходов газа и воздуха и допускают сжигание запыленных газов. Горелки более термостойки и обладают повышенной пропускной способностью при малых сопротивлениях.

Рисунок 2 - Инжекционные горелки с керамическим туннельным каналом

а – однопроводная горелка с одноканальным туннелем; б – двухпроводная горелка с могоканальным туннелем

При высоком давлении сжигаемого газа применяют одно проводные горелки (рисунок 2а) с эжекцией воздуха из атмосферы, а при сжигании газа низкого давления - двухпроводные горелки (рисунок 2б) с принудительной подачей воздуха. Широкое распространение получили также однопроводные инжекционные горелки, в которых цилиндрическая камера смешения заканчивается не керамическим каналом, а металлическим участком диффузор - конфузор.

3) Горелки с частичным смешением. Эти горелки снабжены укороченными смесителями, в которых происходит частичное смешение. Смешение продолжается и завершается в факеле в процессе горения.

Горелки, работающие по этому принципу, широко применяются в энергетике для сжигания природные газов.

В горелках с частичным смешением для низкокалорийных газов, в частности в горелке ВНИИМТ для доменного газа (рисунок 3), из-за соизмеримых расходов газов и воздуха газы и воздух подаются чередующимися плоскими потоками через каналы в форкамеру, в каналах которой начинается смешение и горение. Процесс смешения и горения продолжается и завершается в выходных каналах. Сечение туннеля горелки определяется по количеству продуктов сгорания и скорости их, принимаемой в пределах 30-40 м/с.

Рисунок 3 - Горелка для доменного газа

В заключение следует отметить особенность диффузионного вида горения, связанную с наличием химической неполноты горения. В диффузионном ламинарном пламени температура достигает максимального значения в зоне горения. Вытекающий из горелки газ до поступления в зону горения нагревается за счет тепла, распространяющегося от пламени как теплопроводностью, так и посредством диффузии горячих продуктов сгорания. Некоторые газы, как, например, водород и окись углерода являются теплостойкими и при нагреве до температур 2500-3000 о К сохраняют свою молекулярную структуру. Горение теплостойких газов происходит в прозрачном факеле бледноголубого цвета.

Газы, содержащие углеводородные соединения, являются тепло нестойкими. В случае сжигания этих газов нагрев в восстановительной зоне в отсутствие кислорода вызывает их разложение с образованием сажи и водорода. Разложение углеводородосодержащих газов протекает тем интенсивнее, чем выше температура, при этом одновременно возрастает доля образующихся тяжелых, сложных, трудно сжигаемых углеводородов. Например, разложение метана начинается при температуре около 680-700°С. При нагреве без доступа воздуха до 950°С разлагается 26% метана, а при нагреве до 1150°С - 90%.

Находящиеся в пламени мелкодисперсные частицы сажи и свободного углерода, размеры которых чрезвычайно малы и составляют десятые доли микрона, раскалившись за счет выделившегося при горении тепла, излучают более или менее яркий свет, вызывая свечение пламени.

Диффузионное горение частиц протекает сравнительно медленно, в результате чего часть свободного углерода и тяжелых углеводородов не успевает сгорать и в виде сажи покидает факел. Наличие углерода согласно равновесию С+СО 2 ==2СО вызывает образование СО. Количество углерода, тяжелых углеводородов и СО, присутствующих в продуктах сгорания, определяет величину химического недожога.

3.2 Горение жидкого топлива

Основным жидким топливом, используемым в теплоэнергетике и промышленной теплотехнике является мазут. В установках небольшой мощности также используют смесь технического керосина со смолами.

Наибольшее применение получил метод сжигания в распыленном состоянии. Этот метод позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем.

Процесс горения жидкого топлива можно разделить на следующие стадии:

1) нагревание и испарение топлива;

2) образование горючей смеси;

3) воспламенение горючей смеси от постороннего источника (искры, раскаленной спирали и т.п.);

4) собственно горение смеси.

Определение теоретического и действительного расхода воздуха на горение топлива Горючие вещества топлива взаимодействуют с кислородом воздуха в определенном количественном соотношении. Расход кислорода и количество получающихся продуктов сгорания рассчитывают по уравнениям горения, которые записывают для 1 кмоля каждой горючей составляющей.

На котлах мощных газомазутных энергоблоков без применения каких-либо мероприятий при работе на газе концентрация NО x в продуктах сгорания находится в пределах 650-1050 мг/м 3 .

Технологические методы подавления NО x основаны на снижении температуры и содержания кислорода в зоне активного горения, а также создании в топочной камере зон с восстановительной средой, где продукты неполного горения, вступая во взаимодействие с образующимся оксидом азота, приводят к восстановлению NО x до молекулярного азота.

На основании экспериментальных данных и имеющегося практического опыта могут быть рекомендованы к внедрению следующие основные технологические методы снижения NО x в газомазутных котлах:

Внедрение режимов с малыми значениями α;

При ступенчатом сжигании - пониженными α на грани появления химической неполноты сгорания;

Рециркуляция дымовых газов через горелки в смеси с воздухом;

Двухступенчатое сжигание топлива, что может быть реализовано в конструкции горелок или в топке в целом;

Трехступенчатое сжигание топлива (наиболее целесообразно применять для новых котлов);

Применение специальных горелок;

Впрыск воды (снижает NО x на 20-25%, но приводит к уменьшению КПД котла приблизительно на 0,8%);

Двухсветные экраны (для новых котлов);

Специальные методы сжигания (например, кипящий слой);

Снижение температуры горячего воздуха;

Двухступенчатым сжиганием газа достигнуто снижение оксидов азота 40%;

Одновременном применении нескольких технологических методов удается при сжигании газа снизить выбросы NОx в 4-5, а иногда и более раз;

Поскольку при сжигании газомазутного топлива образовавшиеся NОx - это в основном термические оксиды азота, то, как правило, внутритопочные мероприятия направлены на снижение локальных температур и избытков воздуха.

Снижение избытков воздуха, подаваемого для горения топлива, уменьшает образование как термических, так и топливных NОx;

Максимальный эффект снижения выхода NОx наблюдается при вводе дымовых газов вместе с воздухом или по отдельным каналам горелок.

Наиболее универсальным методом подавления NОx для газомазутных котлов является метод ступенчатого сжигания.

При многоярусном расположении горелок эффективным средством снижения выбросов оксидов азота является нестехиометрическое сжигание топлива, которое реализуется за счет организации двух зон горения, отличающихся коэффициентом избытка окислителя и температурой. В первой зоне снижение образования NОx происходит за счет снижения действующей концентрации кислорода в зоне горения с α < 1 (α = 0,9÷0,95), а во второй зоне - за счет снижения температуры в ядре факела при сжигании топлива с α > 1,0 (α = 1,25÷1,35) при поддержании общего избытка воздуха на уровне α"т =1,05.

При работе на газе и одновременном применении рециркуляции дымовых газов, ступенчатого сжигания и впрыска воды в топку удалось снизить концентрацию NО x в продуктах сгорания с 1,05 до 0,18 г/м 3 (почти в 6 раз);

При одновременном применении ступенчатого сжигания и перераспределения топлива и воздуха по ярусам горелок концентрация NО x снижена с 0,34 до 0,19 г/м 3 (в 1,8 раза) при работе на газе и с 0,29 до 0,15 г/м 3 (в 1,9 раза) при работе на мазуте;

При применении рециркуляции дымовых газов в размере 20% концентрация NО x снижена с 0,3 до 0,15 г/м 3 (в 2 раза);

При одновременном применении ступенчатого сжигания газа и рециркуляции дымовых газов концентрация NО x снижена с 0,26 до 0,085 г/м 3 (в 3 раза);

Положительным свойством беспламенных горелок является то, что продукты сгорания после них содержат существенно меньше наиболее вредных продуктов недожога - оксидов углерода СО и азота N0;

Предварительный подогрев мазута до 200÷250°С (по сравнению с нормальным режимом подогрева до 130°С) позволяет снизить выходNО x в 2-3 раза.

Приведенные данные и анализ других материалов показывают, что достигнутый результат зависит от типа котла, исходного уровня концентраций NО x и применяемого технологического способа подавления. Лучшие результаты дает одновременное применение ступенчатого сжигания и рециркуляции дымовых газов.

3.3 Горение твердого топлива

Процесс горения состоит из следующих стадий:

1) подсушка топлива и нагревание до температуры начала выхода летучих веществ;

2) воспламенение летучих веществ и их выгорание;

3) нагревание кокса до воспламенения;

4) выгорание горючих веществ из кокса. Эти стадии иногда частично накладываются одна на другую.

Технологии подготовки и сжигания угля развивались в течение XIX и XX веков по мере увеличения объемов его промышленного потребления.
На сегодняшний день применяется множество технологий подготовки и сжигания угля. Однако практический интерес представляют технологии, сочетающие в себе как высокую экономическую эффективность, так и высокую экологическую чистоту.

К таким технологиям следует отнести:
псевдофакельное сжигание пылеугольновоздушной смеси;
факельное сжигание угольноводяной суспензии;
сжигание угля в кипящем слое;
низкотемпературный вихревой способ сжигания;

Технология стадийно-ступенчатого сжигания пылевидного угля;

Технология сжигания твёрдого топлива в высокотемпературном

циркулирующем кипящем слое (ВЦКС).

Рассмотрим эти технологии более подробно.

3.3.1 Псевдофакельное сжигание

Подготовка угля к данному способу сжигания заключается в сухом помоле исходного топлива с влажностью до 21 процента в центробежных мельницах до получения однородных угольных частиц со средним размером (дисперсностью) 50‑300мкм, образующих угольную пыль.
Приготовленная пыль поступает в вибрирующий сборный букер‑сепаратор, где угольные частицы размером более 70 мкм отводятся назад в мельницу, а частицы с размером 50‑70 и менее мкм всасываются струйным аппаратом, прокачиваемым подогреты (до температуры +300 °С и более) воздухом, приготавливая при этом сухую пылеугольновоздушную смесь (ПУВС).
Далее ПУВС подается воздухом к топливным горелкам со сниженным выходом оксидов азота.
С помощью горелок смесь распыляется в топочном объеме и зажигается, образуя факел, похожий на мазутный. Для первичного нагрева угольных частиц и постоянного поддержания процесса горения под корневую часть факела непре-

рывно подается небольшое количество жидкого или газообразного топлива, образуя подсветку.
Псевдофакельное горение угля имеет гомогенный характер, в результате чего суммарная площадь контакта горючего и окислителя максимально возможная, а коэффициент избытка воздуха для организации горения данного вида топлива – минимальный и составляет не более 1,3.
Рассмотренная технология подготовки и сжигания угля показала свою высокую эколого-экономическую эффективность в котлах большой мощности ТЭС Великобритании, в частности Eggborough и Longannet, и в котельных установках крупных ТЭС Франции, США, Канады и Тайваня.
Технологический процесс псевдофакельного сжигания угля постоянно совершенствуется в экспериментальных центрах MitsuiBabcock и Ratcliffe, расположенных в Шотландии и Англии.

3.3.2.Факельное сжигание

Впервые этот способ сжигания угля был предложен, разработан и опробован в России. Подготовка угля к сжиганию включает помол исходного топлива в шаровых или барабанных мельницах до получения однородных угольных частиц размером не более 40‑50 мкм.После этого полученная угольная пыль смешивается с пресной водой и готовится грубодисперсная углеводяная суспензия (УВС), включающая 65‑70 процентов угля и 30‑35 процентов воды. Далее УВС винтовыми насосами подается на форсунки топливных горелок, которые распыляют суспензию в топку котла в виде факела.
В качестве распыляющей среды применяется как пар, так и воздух. Воспламенение факела углеводяной суспензии производится мазутом, подаваемым растопочной форсункой, и по достижении ее устойчивого гомогенного горения подача мазута прекращается, и растопочная форсунка отключается. Последующее горение УВС идет без подсветки.
Коэффициент избытка воздуха при сжигании угля указанным способом составляет не более 1,2. Технология факельного сжигания углеводяной суспензии подтвердила свою высокую эколого-экономическую эффективность в энергетических котлах Беловской ГРЭС и Новосибирской ТЭЦ-5 (Россия).
Кроме того, данная технология сжигания угля применяется в США, Канаде, Японии, Швеции, Китае и Италии. В настоящее время Китай активно продвигает представленную технологию подготовки и сжигания угля на мировом энергетическом рынке.

3.3.3 Сжигание в кипящем слое

Для реализации способа сжигания угля в кипящем слое производится дробление топлива до получения частиц размером не более 25‑30 миллиметров.
Размельченный уголь подается транспортером в бункер, из которого с помощью скребкового питателя подается в район первой дутьевой зоны решетки.
Одновременно часть воздуха (около 60 процентов), подогретого в воздухоподогревателе, дутьевым вентилятором нагнетается в дутьевые зоны под колосниковую решетку через зазоры между колосниками для формирования высокотемпературного кипящего слоя и организации процесса сгорания угля.
Оставшийся воздух (около 40 процентов) подается в сопла вторичного дутья для дожигания продуктов неполного сгорания и создания специальной аэродинамики в топочной камере, а также на работу воздушного струйного аппарата, возвращающего горючие компоненты на дожигание.
В случае сжигания угля в кипящем слое горение носит гомогенно-гетерогенный характер.
Полное выделение энергии в кипящем слое обеспечивается всеми горящими в нем угольными частицами. Коэффициент избытка воздуха при сжигании в кипящем слое составляет 1,3. Наибольшая эффективность данного способа сжигания достигнута в котельных установках средней и малой мощности.
Для практической реализации данного способа сжигания угля необходимо дооборудовать котлы топками высокотемпературного кипящего слоя.

3.3.4 Низко-температурное вихревое сжигание

Данный способ сжигания угля впервые предложен, разработан и внедрен российскими инженерами и учеными.
При реализации этого способа перед подачей на горение уголь подвергается углубленному помолу с получением угольных частиц максимальным размером до 10‑25 миллиметров. Первичный воздух в зону горения нагнетается снизу по оси топки и закручивается.
Угольные частицы транспортируются к зоне горения вторичным, воздушным потоком, образуя угольновоздушную смесь, которая подается в вихревой поток первичного воздуха горелками, расположенными под углом к оси топки.
Первое воспламенение смеси осуществляется газом, дизельным топливом или мазутом при помощи растопочной форсунки, затем процесс сгорания угольных частиц идет в виде турбулентного факела без подсветки. В топке котла организуются две зоны горения, разнесенные по высоте: вихревая и прямоточная.
Вихревая зона является основной и занимает нижнюю часть внутреннего объема топки от устья холодной воронки до горелок. Прямоточная зона горения располагается над вихревой зоной.
В нижнем объеме топки (вихревой зоне) организуется вращательное движение газового потока с горизонтальной осью вращения. Горящие угольные частицы и горячие топочные газы циркулируют в вихревой зоне и отводятся из нее в район горелок, через которые происходит подвод в топку новой, свежей порции топливовоздушной смеси.
Смешиваясь с горячими частицами и газами, новая порция помолотого угля быстро прогревается и воспламеняется, обеспечивая устойчивое горение в топке.
Горение топлива равномерно распределено по всему объему топки и не зависит от изменения нагрузок на котел.
Такое сжигание угля снижает максимальную температуру в ядре факела и выравнивает температурное поле по всему объему горения.
Коэффициент избытка воздуха при указанной технологии сжигания угля составляет не более 1,3. Технологический процесс подготовки и низкотемпературного вихревого сжигания угля длительное время используется на энергетических котлах средней и большой мощности энергетических объектов России, например на Иркутской ТЭЦ-10 и Усть-Илимской ТЭЦ.

Выход летучих веществ у различных топлив начинается при различных температурах: у торфа при 550-660 0К, у бурых углей при 690-710 0К, у тощих углей и антрацита при 1050-1070 0К.

Топочные устройства котлов могут быть слоевые - для сжигания крупнокускового топлива и камерные - для сжигания газообразного, жидкого и твёрдого пылевидного топлива. Некоторые из вариантов организации топочных процессов представлены на рисунке 4. Слоевые топки бывают с плотным и кипящим слоем, камерные подразделяются на факельные и циклонные.

Рисунок 4 - Схемы организации топочных процессов

При сжигании в плотном слое воздух для горения проходит через слой, не нарушая его устойчивости, т.е. сила тяжести частиц топлива больше динамического напора воздуха.

При сжигании в кипящем слое из-за повышенной скорости воздуха нарушается устойчивость частиц в слое, они переходят в состояние «кипения», т.е. переходят во взвешенное состояние. При этом происходит интенсивное перемешивание топлива и окислителя, что способствует интенсификации процесса горения.

При факельном сжигании топливо сгорает в объёме топочной камеры, для чего частицы твердого топлива должны иметь размер до 100 мкм.

При циклонном сжигании частицы топлива под влиянием центробежных сил отбрасываются на стенки топочной камеры и, находясь в закрученном потоке в зоне высоких температур, полностью выгорают. Допускается размер частиц больший, чем при факельном сжигании. Минеральная составляющая топлива в виде жидкого шлака удаляется из циклонной топки непрерывно.

3.3.5 Технология стадийно-ступенчатого сжигания пылевидного угля

Технология стадийно-ступенчатого сжигания пылевидного угля с использованием низкоэмиссионных прямоточных горелок обеспечивает достижение предельно низких выбросов окислов азота. Данная технология и конструкция горелки предназначены и рекомендуются для пылевидного сжигания каменных и бурых углей в котлах тепловых электростанций и крупных котельных. Новая технология позволяет:

Уменьшить выбросы NOx до уровня 350-400 мг/нм3%;

Обеспечить высокую экономичность и стабильность горения при низкой эмиссии СО;

Уменьшить шлакование и коррозию экранов топки.

Система трехступенчатого сжигания является одним из направлений в развитии технологии низкоэмиссионного сжигания. Суть системы заключается в организации в топочном пространстве трех зон. В нижней зоне сжигается 70..85 % всего топлива с избытком воздуха близким к единице или ниже. Выше этой зоны в топку подается оставшаяся часть топлива (15…30 %) с избытком воздуха значительно ниже единицы. Еще выше, в третьей зоне, в топку подается оставшаяся часть воздуха (15…25 %) с целью дожигания продуктов химического и механического недожога, образованных в предыдущих зонах.
Предложенная схема трёхступенчатого сжигания с газовым восстановительным топливом обеспечивает достижение выбросов NOx ниже 300 мг/нм3, что в 2 раза ниже, чем при обычном сжигании таких же углей.

Рисунок 5 - Система трехступенчатого сжигания

3.3.6 Технология сжигания твёрдого топлива в высокотемпературномциркулирующем кипящем слое (ВЦКС).

Единственной на сегодня технологией, которая позволяет эффективно сжигать низкосортное твёрдое топливо, является технология т.н. кипящего слоя, когда частицы угля находятся во взвешенном состоянии, что обеспечивает их быстрое и полное сгорание.

В настоящее время основной технологией сжигания низкосортных и/или мелкофракционных углей в паровых и водогрейных котлах малой и средней мощности (мощностью до 35 МВт) в Российской Федерации признана одна из наиболее рентабельных технологий кипящего слоя – технология высокотемпературного циркулирующего кипящего слоя (ВЦКС), которая сводит к разумному минимуму объём комплектации оборудованием и стоимость работ, сохраняя при этом все преимущества «классического» кипящего слоя.

Технология ВЦКС является одной из модификаций передового метода сжигания топлива в кипящем слое и сохраняет все основные его достоинства, а именно:

Способность сжигать практически любые марки углей, включая отсевы и штыбы;

Низкий уровень вредных выбросов;

Значительно более высокийк.п.д. в сравнении с фактическим к.п.д. слоевых котлов на аналогичном топливе;

Высокая маневренность (30 –100% от номинальной производительности).

Кроме того, технология ВЦКС по сравнению с «классическим» низкотемпературным кипящем слоем (НТК) обладает рядом дополнительных преимуществ, особенно при реконструкции действующих котельных, мало пригодных для установки габаритного оборудования – дополнительных систем подачи и удаления из топки инертна (песка) и не всегда имеющих возможность использовать газ или мазут для растопки котлов.

К этим дополнительным преимуществам ВЦКС следует отнести следующие факторы:

Для образования кипящего слоя не требуется специального инертного материала, слой формируется из частиц угля, кокса и золы;

Отсутствие инертной засыпки позволяет существенно снизить рабочую высоту слоя, поэтому не требуется применения высоконапорного вентилятора;

Вместо характерной для «классического» кипящего слоя неподвижной воздухораспределительной решётки используется подвижная наклонная решётка-транспортёр, собираемая из стандартных колосников, одной из функций которой является транспортировка шлака в канал шлако-золоудаления (ШЗУ);

Большая часть золы топлива выгружается с решетки вместе со шлаком благодаря эффекту агломерации золы в ВЦКС (т.н. эффект Годеля), что резко снижает вероятность зашлаковывания поверхностей нагрева котла и снижает нагрузку на золоулавливающее оборудование, т.е. обеспечивает резкое снижение твёрдых выбросов в атмосферу;

Предварительного разогрева слоя не требуется, розжиг котла ВЦКС мощностью до 35 МВт может осуществляться без применения пусковых газо-мазутных горелок и резервного топлива, т.е. аналогично розжигу обычного слоевого котла – от костра;

Циркуляция материала слоя обеспечивается без применения крупногабаритных «горячих циклонов» с водяным охлаждением;

Ограничения по фракционному составу топлива не столь высоки, допускаются наличие кусков до 30 мм;

В зависимости от компоновки котла решётка ВЦКС может устанавливаться под котлом как с наклоном в сторону фронтового экрана (прямой ход колосникового полотна), так и с наклоном в сторону заднего экрана (обратный ход полотна);

Эксплуатация и обслуживание топок ВЦКС в целом не слишком отличается от эксплуатации и обслуживания обычных слоевых топок, что способствует быстрому освоения новой технологии персоналом котельной.

При реконструкции котла на ВЦКС возможно повышение его номинальной нагрузки на 20 – 40% в зависимости от вида и качества сжигаемого топлива.

К.П.Д. котла после реконструкции на ВЦКС повышается, как правило на 10-15% (до 85- 87%) и более по сравнению с фактическим к.п.д. котла до реконструкции, а уровень вредных выбросов снижается, как минимум, 1,5 – 2 раза .

Рисунок 6 - Схематичный вид котла типа ДКВр с топкой ВЦКС

Снижение вредных выбросов в атмосферу достигнуто в основном за счет изменения структуры сжигаемого топлива и внедрения на теплоэлектростанциях технологических методов и режимных мероприятий.

Количество твердых веществ, выбрасываемых в атмосферу, определяется зольностью топлива, полнотой сгорания горючей массы, глубиной золоочистки.

Снижение SO2 в дымовых газах промышленной теплоэнергетики осуществляется двумя путями:

1)предварительное удаление серы из топлива;

2)очистка дымовых газов в ходе или после процесса сжигания топлива.

При сжигании угля с коэффициентом избытка воздуха 1,05-1,2 степень очистки дымовых газов от оксидов азота достигает 60-70%;

Снижение вредных выбросов оксидов серы SO 2 в топках с кипящим слоем;

При снижении коэффициента избытка воздуха с 1,18 до 1,04 можно добиться снижения NO x с 325 мг/м 3 до 190 мг/м 3 ;

Технология стадийно-ступенчатого сжигания пылевидного угля с использованием низкоэмиссионных прямоточных горелок обеспечивает достижение предельно низких выбросов окислов азота.

Новая технология позволяет:

· уменьшить выбросы NOx до уровня 350-400 мг/нм3%;

· обеспечить высокую экономичность и стабильность горения при низкой эмиссии СО;

· уменьшить шлакование и коррозию экранов топки.

Трёхступенчатого сжигания с газовым восстановительным топливом обеспечила достижение выбросов NO x ниже 300 мг/нм³, что в 2 раза ниже, чем при обычном сжигании таких же углей;

Использование технологии ВЦКС (высокотемпературный циркулирующий кипящий слой) обеспечивает:

· снижение выбросов золы без применения дорогостоящих и громоздких аппаратов очистки газов (за счет возврата золы-уноса);

· снижение выбросов NOx за счет многоступенчатого горения;

· при сжигании малосернистых углей снижение выбросы оксидов серы до допустимого уровня без применения специальных способов сероочистки;

· при сжигании высокосернистых углей подавление оксидов серы простым и наименее затратным способом – незначительной присадкой к топливу известняковой добавки.

Снижение выбросов СО 2 при технологии неполной газификации с образованием полукокса составляет примерно 35% по сравнению с традиционной технологией сжигания топлива. Этот эффект достигается за сет депонирования углерода в полукоксе.

Применение технологии газификации позволяет в отдельных случаях на 96% сократить выброс основных загрязняющих веществ (для диоксида серы – на 96%, для оксидов азота – на 84%, для пыли – на 83 %) и снизить социальный ущерб от их выбросов в сумме на 96%.

Для снижения выбросов окислов серы в атмосферу при сжигании низкосортных углей рекомендуется совместное сжигание угля и биомассы, в том числе, и в виде биогранул.

6.1 Влияние состава топлива и условий сжигания на экологические характеристики котельной установки

Антропогенное загрязнение атмосферы в последние десятилетия приобрело глобальный характер. Источниками загрязнения атмосферы служат теплоэнергетика, промышленность, нефте- и газопереработка, транспорт, сельское хозяйство. Каждый из этих источников, каждая отрасль производства связаны с выбросами тех или иных веществ. Современная энергетика - крупная высокоразвитая отрасль промышленности, тесно связанная со всеми отраслями экономики.

Воздействие энергетики на биосферу проявляется на всех стадиях производства энергии: при извлечении и транспортировке ресурсов, при производстве, передаче и потреблении энергии.

Например, извлечение угля связано с изменением ландшафта, с образованием шахт, карьеров, отвалов; транспорт угля - с потерями, рассеиванием твердых частиц в почву и в атмосферу. При сжигании органического топлива образуются оксиды углерода, серы, азота, соединения свинца, сажа, углеводороды, в том числе канцерогенные (например, бенз(а)пирен С 20 Н 12), и другие вещества в твердом, жидком и газообразном состоянии. Передача электроэнергии приводит к образованию мощных электромагнитных полей вблизи линий электропередачи. Работа энергетических установок неизбежно связана с выбросами тепловой энергии.

Кроме того, из пользования изымаются большие площади земель, особенно при сооружении гидроэлектростанций.

Воздействие тепловых электростанций ТЭС на окружающую среду зависит от используемого топлива. При сжигании твердых видов топлива в атмосферу поступают летучая зола, частицы несгоревшего топлива, сернистый и серный ангидриды, окислы азота, фтористые соединения. В золе содержатся разные токсичные соединения - мышьяк, двуокись кремния, оксид кальция и другие. Использование жидких видов топлива (мазутов) исключает из отходов производства только лишь золу. При этом отпадает проблема золоотвалов, которые занимают значительные территории и являются источником постоянных загрязнений атмосферы в районе станции. При сжигании природного газа существенным загрязнителем являются окислы азота, но в среднем они на 20% ниже, чем при сжигании твердых видов топлива. Это объясняется не только свойствами самого топлива, но и особенностями его сжигания. Таким образом, экологический ущерб от вредных воздействий ТЭС на окружающую среду в случае использования газа будет минимальным в сравнении с другими видами топлива.

Из-за высокого уровня развития промышленности 93% всех газовых выбросов сосредоточено в Северном полушарии Земли. Основная часть продуктов сгорания всех видов топлива (90%) выбрасывается на площади около 3% от поверхности планеты - в Европе, Японии и Северной Америке. Из газообразных веществ в наибольших количествах выбрасывается углекислый газ и угарный газ, которые образуются при сгорании топлива (угля, нефти, газа, автомобильного топлива и др.). Самые токсичные соединения, выбрасываемые в атмосферу, - диоксид серы и оксиды азота.

Ежегодный мировой выброс этих газов составляет более 255 млн. т. Если бы один из самых токсичных оксидов - сернистый ангидрид - не перерабатывали высшие растения, то за 20 лет все высшие животные погибли бы. Источниками диоксида серы и оксидов азота являются угольные ТЭЦ, промышленные предприятия, автотранспорт. В воздухе эти газы реагируют с парами воды, образуя серную и азотную кислоту. В результате в отдельных регионах выпадают осадки, кислотность которых в 10–1000 раз превышает нормальную. Кислотным считается дождь, имеющий рН менее 5,6.

Загрязнение атмосферного воздуха имеет серьезные последствия. Создается угроза здоровью человека, нормальному функционированию экосистем. Для нормального функционирования и устойчивости экосистем и биосферы в целом не следует превышать определенные нагрузки на них. В связи с этим необходимо вести поиск наиболее чувствительных звеньев в экосистемах, найти показатели, соответствующие наиболее сильнодействующим факторам, а также источники такого воздействия. Эти мероприятия входят в систему экологического мониторинга, под которым понимают единую систему средств и методов непрерывного наблюдения за состоянием окружающей среды и систему прогнозирования результатов антропогенного воздействия на нее. В задачи мониторинга входит наблюдение за состоянием биосферы, оценка и прогноз состояния окружающей среды, выявление факторов и источников антропогенного воздействия, обоснование решений по рациональному использованию природных ресурсов, регулирование процесса природопользования. Организация мониторинга должна решать как локальные задачи наблюдения за состоянием отдельных экосистем, так и задачи планетарного порядка, т. е. предусматривать систему глобального мониторинга.

Теплоэнергетика лидирует по суммарным выбросам загрязняющих веществ в атмосферу. Ее доля в суммарных выбросах загрязняющих веществ промышленности от стационарных источников достигла в 2009 г. 21,7%. В 2010 г. выбросы загрязнителей составили 5,37 млн. т, что ниже уровня 1990 г. на 2,3 млн. т. В 2005 г. выбросы загрязнителей составили 3,9 млн. т, что ниже уровня 2004 г. на 56 тыс. т Сохранение устойчивой тенденции сокращения выбросов обусловлено увеличением до 64% доли природного газа в структуре топливно‑энергетического баланса (ТЭБ). Кроме того, повышается экологическая культура эксплуатации тепловых станций, осуществляется внедрение на ТЭС технологий, направленных на повышение эффективности действующих золоулавливающих установок. В целях обеспечения нормативной базы по снижению воздействия на атмосферу от энергетических установок разработан и введен в действие ГОСТ Р 50831–95 «Установки котельных. Техническое оборудование. Общие требования», в котором установлены нормативы удельных выбросов для вновь вводимых котельных установок, соответствующие мировым стандартам.

Крупными источниками загрязнения окружающей среды являются нефтегазовые месторождения и магистральные трубопроводы. Загрязнение почвы, грунтовых и поверхностных вод нефтью и ее компонентами, высокоминерализованными пластовыми и сточными водами, шлаками происходит также на стадии подготовки нефтегазового сырья к переработке. При этом в атмосферу поступает значительное количество компонентов нефти, нефтяной газ и продукты его сгорания.

Газовая промышленность. Объемы выбросов загрязняющих веществ в атмосферный воздух от стационарных источников за 1995–2008 гг. сократились более чем в 3 раза (без учета выбросов метана). Следует отметить, что, несмотря на проводимую работу по снижению загрязнения атмосферного воздуха, выбросы загрязняющих веществ по газовой промышленности составили в 2007 г. более 590 тыс. т. Основной причиной являются аварии на магистральных газопроводах, происходящие вследствие старения оборудования и отсутствия средств на капитальный ремонт. Увеличение нагрузки на окружающую среду обусловлено преимущественно ростом выбросов метана, с учетом которого выбросы загрязняющих веществ в 2009 г. составили 1,83 млн. т Эмиссия метана и углекислого газа в газовой отрасли происходит на всех стадиях технологического процесса. Доминирующее влияние оказывает газотранспортная система, на долю которой приходится 70% всех выбросов.

Угольная промышленность. Выбросы вредных веществ в атмосферу угольной отраслью за период 1995–2009 гг. снизились в 1,5 раза. Ее доля в выбросах промышленности составляет 4,8% (2007 г.). В 2009 г. общий объем выбросов загрязнителей в атмосферный воздух составил 450 тыс. т

Использование метана угольных пластов в энергетических установках позволит снизить затраты на теплоснабжение и улучшить экологическую ситуацию в жилых поселках за счет отказа от сжигания угля. По сравнению с другими энергоносителями уголь содержит наибольшее количество серы - 0,2–7,0%, мазут - 0,5–4,0%, дизельное топливо - 0,3–0,9%, природный газ - незначительную долю.

В условиях растущего дефицита природных ресурсов, увеличения масштабов и количества техногенных аварий и катастроф важнейшим направлением развития ТЭК является повышение эффективности использования ТЭР, снижение отрицательного влияния деятельности ТЭК на окружающую природную среду в целях предотвращения экологической катастрофы и создание условий для перехода на энергосбережение.

ТЭС работают на органическом топливе, в качестве которого используют сравнительно дешевые уголь и мазут. Эти виды топлива - невосполнимые природные ресурсы. Основные энергетические ресурсы в мире сегодня- уголь (40%), нефть (27%), газ (21%). Однако этих запасов, по некоторым оценкам, хватит, соответственно, на 270, 50 и 70 лет, и это при условии, что человечество будет расходовать их с той же скоростью, что и сегодня. Сжигание топлива на ТЭС связано с образованием продуктов сгорания, содержащих летучую золу, частицы недогоревшего пылевидного топлива, сернистый и серный ангидрид, оксиды азота и газообразные продукты неполного сгорания, а при сжигании мазута, кроме того, соединения ванадия, соли натрия, кокс и частицы сажи. В золе некоторых топлив имеется мышьяк, свободный диоксид кремния, свободный оксид кальция и др. Перевод с твердого топлива на газовое ведет к значительному удорожанию вырабатываемой энергии, не говоря уже о дефиците и того, и другого. Кроме того, это не решит проблемы загрязнения атмосферы. Перевод установок на жидкое топливо существенно уменьшает золообразование, но практически не влияет на выбросы окиси серы, так как мазуты, применяемые в качестве топлива, содержат более 2% серы. При сжигании газа в дымовых выбросах также содержится оксид серы, а содержание оксидов азота не меньше, чем при сжигании угля. Так как не хватает качественного топлива, ТЭС работают на низкосортном. В процессе сгорания такого топлива образуются загрязняющие вещества, которые выводятся в атмосферу с дымом и попадают в почву с золой. Помимо того, что эти выбросы неблагоприятно влияют на окружающую среду, продукты сгорания вызывают выпадение кислотных осадков и парниковый эффект, который грозит нам засухами.

Одним из факторов воздействия угольных ТЭС на окружающую среду являются выбросы систем складирования топлива, его транспортировки, пылеприготовления и золоудаления. При транспортировке и складировании возможно не только пылевое загрязнение, но и выделение продуктов окисления топлива. Для золошлакоотвалов требуются значительные территории, которые долгое время не используются, и являются очагами накопления тяжелых металлов и повышенной радиоактивности, которые воздушным путем или же с водой попадают в биосферу.

Кроме того, происходит значительное тепловое загрязнение водоемов при сбрасывании в них теплой воды, что сопутствует цепным природным реакциям: зарастанию водоемов водорослями, нарушению кислородного баланса, что создает угрозу для жизни обитателей рек и озер.

Значительные площади земель вблизи водохранилищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, переходят в категорию заболоченных. В равнинных условиях подтопленные земли могут составлять 10% и более от затопленных. Уничтожение земель и свойственных им экосистем происходит также в результате их разрушения водой (абразии) при формировании береговой линии. Абразионные циклы обычно продолжаются десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ.

Основными факторами воздействия ТЭС на гидросферу являются выбросы теплоты, следствием которых могут быть: постоянное локальное повышение температуры в водоеме; временное повышение температуры; изменение условий ледостава, зимнего гидрологического режима; изменение условий паводков; изменение распределения осадков, испарений, туманов.

На ТЭС с охлаждающей водой сбрасывается от 4 до 7 кДж теплоты на каждый 1 кВт·ч выработанной электроэнергии. По санитарным нормам тепловые сбросы не должны повышать собственную температуру водоема более чем на 5° в зимнее время и 3° в летнее.

Источниками загрязнения атмосферы являются производственные стоки и выбросы продуктов сгорания.

К сточным водам ТЭС относятся следующие воды: содержащие нефтепродукты, после обмывки поверхностей нагрева паровых котлов, сбросные после установок химической очистки, консервации и промывок оборудования, а также систем гидрозолоудаления. Количество сточных вод, содержащих нефтепродукты, не зависит от мощности станции и типа оборудования, хотя при использовании жидкого топлива оно несколько выше, чем для ТЭС на твердом топливе. В то же время в основном количество их зависит от качества монтажа и эксплуатации оборудования электростанции. Совершенствование конструкции оборудования, тщательное соблюдение правил его эксплуатации позволяют снизить до минимальных значений количество поступающих в сточные воды нефтепродуктов, а применение различного типа ловушек и отстойников позволяет исключить их попадание в окружающую среду. Загрязняющие примеси выбросов электростанций воздействуют на биосферу района расположения предприятия, подвергаются различным превращениям и взаимодействиям, а также осаждаются, вымываются атмосферными осадками, поступают в почву и водоемы. Кроме основных компонентов, образующихся в результате сжигания органического топлива (углекислого газа и воды), выбросы ТЭС содержат пылевые частицы различного состава, оксиды серы, оксиды азота, фтористые соединения, оксиды металлов, газообразные продукты неполного сгорания топлива. Их поступление в воздушную среду наносит большой ущерб, как всем основным компонентам биосферы, так и предприятиям, объектам городского хозяйства, транспорту и населению городов. Наличие пылевых частиц, оксидов серы обусловлено содержанием в топливе минеральных примесей, а наличие оксидов азота – частичным окислением азота воздуха в высокотемпературном пламени. Наиболее высокой биологической активностью обладает диоксид азота, который оказывает раздражающее действие на дыхательные пути и слизистую оболочку глаза. Также большую экологическую опасность для человека представляют тяжелые металлы. Попадая в организм в больших количествах, в течение короткого времени они могут вызвать острое отравление, а при хроническом воздействии малых доз в течение продолжительного времени может проявиться канцерогенное действие мышьяка, хрома, никеля и т.д. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа-400 млн. доз, магния -1,5 млн. доз. В выбросах угольных ТЭС содержатся также окислы кремния и алюминия. Эти абразивные материалы способны разрушать легочную ткань и вызывать такое заболевание, как силикоз, которым раньше болели шахтеры. Сейчас случаи заболевания силикозом регистрируются у детей, проживающих вблизи угольных ТЭС. Наряду с увеличением углекислого газа, происходит уменьшение доли кислорода в атмосфере, который расходуется на сжигание топлива на тепловых станциях.

6.2 Предельно допустимые концентрации вредных выбросов котельных по требованиям САНПИН

Воздействие на животный и растительный мир оказывает загрязнение атмосферы окисью серы (), которая разрушает хлорофилл растений, может привести к повреждениям листьев и хвои. Воздействие окиси углерода () на человека и животных состоит в том, что она, соединяясь с гемоглобином крови, очень быстро лишает организм кислорода и приводит к нарушению нервной системы. Оксиды азота снижают прозрачность атмосферы и способствуют образованию смога. Токсичностью отличается пентаксид ванадия (), входящий в состав золы мазута. Это вещество вызывает раздражение дыхательных путей у человека и животных, расстройство кровообращения и нервной системы, а также нарушение обмена веществ.

Бенз(а)пирен - своеобразный канцероген, который способен вызывать онкологические заболевания. Поэтому проектирование и сооружение электростанций ведутся с соблюдением требований по предельно допустимым концентрациям основных выбросов, загрязняющих атмосферу отходящими газами предприятий в атмосферном воздухе на уровне дыхания человека (таблица 2).

Таблица 2 - Предельно допустимая концентрация основных выбросов, загрязняющих атмосферу отходящими газами ТЭС в атмосферном воздухе на уровне дыхания человека

Учитывая огромный ущерб, причиняемый как окружающей среде, так и человеку, санитарным законодательством промышленно развитых стран установлены предельно допустимые концентрации (ПДК) веществ, загрязняющих воздух, водоемы и почву. Для каждой стран уровни ПДК свои. Единые международные стандарты до сегодняшнего дня не выработаны. Тем не менее, большинство стран (такие как Германия, Великобритания, Дания, Голландия, Италия, Венгрия, Польша, Россия, Норвегия, Финляндия и т.д.) повсеместно стремятся к снижению вредных выбросов и ужесточению требований к предприятиям загрязняющим окружающую среду.

ПДК – это норматив концентрации химического соединения, которая при ежедневном воздействии в течение длительного времени на организм человека не приводит к каким-либо патологическим изменениям в состоянии здоровья человека, а также не нарушает биологического оптимума для человека. Таким образом под вредным понимают такое воздействие, которое превышает ПДК, а вредный выброс - это выброс какого-либо вещества в количестве превышающий ПДК. ПДК вредных веществ (т.е. веществ, которые при контакте с организмом человека могут привести к производственной травме, профессиональным заболеваниям или отклонениям в состоянии здоровья, либо химическое вещество, вызывающее нарушение в росте, развитии или состоянии здоровья организмов, в том числе в цепи поколений) устанавливаются в воздухе рабочей зоны, атмосферном воздухе и в воде водных объектов.

ПДК РЗ – предельно допустимая концентрация вредного вещества в воздухе рабочей зоны, мг/м 3 .

ПДК МР – максимально разовая концентрация вредного вещества в воздухе населенных мест, мг/м 3 .

ПДК СС – среднесуточная предельно допустимая концентрация (т.е. концентрация загрязнителя в воздухе не оказывающая на человека прямого или косвенного вредного воздействия при круглосуточном вдыхании), мг/м 3 .

ПДК В – предельно допустимая концентрация вредных веществ в воде водоемов, мг/дм 3 .

Большинство современных электростанций вынуждены работать в условиях фоновых загрязнений, создаваемых как другими предприятиями, так и собственно средой района функционирования. При этом фоновым загрязнением атмосферного воздуха считается загрязнение без учета выбросов рассматриваемого предприятия. Поэтому при изучении выбросов конкретного источника следует учитывать фоновое загрязнение по каждому ингредиенту.

Предельно допустимой признана такая концентрация, которая не оказывает на человека прямого или косвенного вредного и неприятного действия, не снижает работоспособности, не влияет на его самочувствие или настроение. Взаимодействие выбросов с туманом приводит к образованию устойчивого сильно загрязненного мелкодисперсного облака - смога, наиболее плотного у поверхности земли. Одним из видов воздействия ТЭС на атмосферу является все возрастающее потребление воздуха, необходимого для сжигания топлива. Некоторые пути решения проблем современной энергетики. Нужно сказать, что воздействия ТЭС на окружающую среду значительно отличаются по видам топлива.

Наиболее «чистое» топливо для тепловых электростанций – газ, как природный, так и получаемый при переработке нефти или в процессе метанового брожения органических веществ. Наиболее «грязное» топливо – горючие сланцы, торф, бурый уголь. При их сжигании образуется больше всего пылевых частиц и оксидов серы. Хотя в настоящее время значительная доля энергии производится за счет относительно чистых видов топлива (газ, нефть), но закономерной является тенденция уменьшения их доли. По имеющимся прогнозам, эти энергоносители потеряют свое ведущее значение уже в первой четверти XXI столетия. Здесь уместно вспомнить высказывание Д. И. Менделеева о недопустимости использования нефти как топлива: «Нефть не топливо - топить можно и ассигнациями». Не исключена вероятность существенного увеличения в мировом энергобалансе использования угля. По имеющимся расчетам, запасы углей таковы, что они могут обеспечивать мировые потребности в энергии в течение 200-300 лет Возможная добыча углей, с учетом разведанных и прогнозных запасов, оценивается более чем в 7 триллионов тонн. При этом более 1/3 мировых запасов углей находится на территории России. Поэтому закономерно ожидать увеличения доли углей или продуктов их переработки (например, газа) в получении энергии, а, следовательно, и в загрязнении среды. Угли содержат от 0,2 до десятков процентов серы в основном в виде пирита, сульфата закисного железа и гипса. Для соединений серы существуют два подхода к решению проблемы минимизации выбросов в атмосферу при сжигании органических топлив:

1) очистка от соединений серы продуктов сгорания топлива (сероочистка дымовых газов);

2) удаление серы из топлива до его сжигания.

К настоящему времени по обоим направлениям достигнуты определённые результаты. В числе достоинств первого подхода следует назвать его безусловную эффективность – удаляется до 90-95% серы – возможность применения практически вне зависимости от вида топлива. К недостаткам следует отнести большие капиталовложения. Энергетические потери для ТЭС, связанные с сероочисткой, ориентировочно составляют 3-7%. Основным преимуществом второго пути является то, что очистка осуществляется независимо от режимов работы ТЭС, в то время как установки по сероочистке дымовых газов резко ухудшают экономические показатели электростанций за счёт того, что большую часть времени вынуждены работать в нерасчётном режиме. Установки же по сероочистке топлив можно всегда использовать в номинальном режиме, складируя очищенное топливо.

Проблема снижения выбросов окислов азота ТЭС серьезно рассматривается с конца 60-х годов. В настоящее время по этому вопросу уже накоплен определённый опыт. Можно назвать следующие методы:

1) уменьшение коэффициента избытка воздуха (так можно добиться снижения содержания окислов азота на 25-30%, уменьшив коэффициент избытка воздуха с 1,15 - 1,20 до 1,03);

2) разрушение окислов до нетоксичных составляющих.

Для уменьшения концентрации загрязняющих соединений в приземном слое воздуха котельные ТЭС оборудуют высокими, до 100-200 и более метров, дымовыми трубами. Но это приводит также к увеличению площади их рассеивания. В результате крупными промышленными центрами образуются загрязнённые области протяженностью в десятки, а при устойчивом ветре – в сотни километров.

6.2.1 Влияние загрязнений атмосферного воздуха на состояние здоровья человека

Влияние загрязнений атмосферного воздуха на состояние здоровья человека

На ТЭС основным источником загрязнения являются дымовые газы. Содержание вредных веществ в них определяет не только состояние атмосферы, но во многом и состояние почвы и водного бассейна, влияет на жизнь флоры и фауны и, конечно, человека. Именно через атмосферные выбросы вокруг городов Ачинска, Назарово, Канска сложились ареалы техногенного изменения окружающей среды диаметром до 20...30 км, где сильно нарушена структура почв, растительности, био- и микроценозов. Особенно тяжелая ситуация сложилась в крупных промышленных центрах Сибири. В г. Ачинске, например, только глиноземный комбинат выбрасывает в атмосферу ежегодно около 160 тыс. т пыли, 22 тыс. т сернистого газа, 14,5 тыс. т оксидов азота. Аналогичная обстановка и в Новокузнецке, Назарово, Прокопьевске, Кемерово и ряде других городов.

Бенз(а)пирен.

Бенз(а)пирен – химическое соединение, представитель семейства полициклических углеводородов, вещество первого класса опасности.

Образуется при сгорании углеводородного жидкого, твёрдого и газообразного топлива (в меньшей степени при сгорании газообразного).

В окружающей среде накапливается преимущественно в почве, меньше в воде. Из почвы поступает в ткани растений и продолжает своё движение дальше в трофической цепи, при этом на каждой её ступени содержание БП в природных объектах возрастает на порядок.

Бенз(а)пирен является наиболее типичным химическим канцерогеном окружающей среды, он опасен для человека даже при малой концентрации, поскольку обладает свойством биоаккумуляции. Будучи химически сравнительно устойчивым, бенз(а)пирен может долго мигрировать из одних объектов в другие. В результате многие объекты и процессы окружающей среды, сами не обладающие способностью синтезировать бенз(а)пирен, становятся его вторичными источниками. Бенз(а)пирен оказывает также мутагенное действие.

Международная группа экспертов отнесла бенз(а)пирен к числу агентов, для которых имеются ограниченные доказательства их канцерогенного действия на людей и достоверные доказательства их канцерогенного действия на животных. В экспериментальных исследованиях бенз(а)пирен был испытан на девяти видах животных, включая обезьян. В организм бенз(а)пирен может поступать через кожу, органы дыхания, пищеварительный тракт и трансплацентарным путём. При всех этих способах воздействия удавалось вызвать злокачественные опухоли у животных.

5.1. Способы сжигания твердого топлива

5.2. Сжигание жидких топлив

5.2.1. Качество мазута.

5.2.2. Проблемы подготовки мазута к сжиганию

5.2.3. Проблемы при использовании мазута на котельных и ТЭЦ

5.3. Сжигание газообразных топлив

5.3.1. Подготовка газа

5.3.2. Особенности процесса горения природного газа

5.3.3. Сжигание газообразного топлива

5.3.4. Газовые горелки

5.4. Комбинированные горелки

5.5. Приборы контроля пламени

5.6. Газоанализаторы

5.7. Примеры газовых горелок

5.7.1. БК-2595ПС

5.7.3.БИГ-2-14

5.8. Удаление продуктов горения.

5.1. Способы сжигания твердого топлива

Способы сжигания. Топочное устройство, или топка, являет­ся основным элементом котельного агрегата или огневой промышленной печи и служит для сжигания топлива наиболее эко­номичным способом и превращения его химической энергия в тепло. В топке происходят горение топлива, передача части теп­лоты продуктов сгорания поверхностям нагрева, находящимся в зоне горения, а также улавливание некоторого количества очаговых остатков (золы, шлака). В современных котельных агрега­тах и печах до 50 % теплоты, выделенной в топке, передается поверхностям нагрева излучением. В топочной технике обычно используют следующие основные способы сжигания твердого топлива: слоевой, факельный (камер­ный), вихревой и сжигание в кипящем слое (рис. 5.5). Каждый из этих способов имеет свои особенности, касающиеся основных прин­ципов организации аэродинамических процессов, протекающих в топочной камере. Для сжигания жидких и газообразных топлив применяется только факельный (камерный) способ сжигания.

Слоевой способ. Процесс сжигания этим способом осуществляют в слоевых топках

(см. рис. 5.5а ), имеющих разнообразные конструкции. Слоевой процесс горения характерен тем, что в нем поток воздуха встречает при своем движении неподвижный или медленно движущийся слой топлива и, взаимодействуя с ним, превращается в поток топочных газов.

Важной особенностью слоевых топок является наличие запаса топлива на решетке, увязанного с его часовым расходом, что по­зволяет осуществлять первичное регулирование мощности топки только изменением количества подаваемого воздуха. Запас топли­ва на решетке обеспечивает также определенную устойчивость процесса горения.

В условиях современной топочной техники слоевой способ сжигания топлива является устаревшим, так как его различные схемы и варианты непригодны или трудно приспосабливаемы к крупным энергетическим установкам. Однако слоевые методы сжига­ния твердого топлива еще длительное время будут применяться в котельных малой и средней энергетики.

На рис. 5.6 6 показаны принципиальные схемы слоевых топок. При слоевом способе сжигания необходимый для горения воздух пода­ется из зольника 1 к слою топлива 3 через свободное сечение ко­лосниковой решетки 2. В топочной камере 4 над слоем горят газооб­разные продукты термического разложения топлива и вынесенные из слоя мелкие частицы топлива. Продукты сгорания вместе с из­быточным воздухом из топки поступают в газоходы котла.

Слоевые топки получили широкое применение в котлах малой и средней мощности. Они разделяются по нескольким классифи­кационным признакам. В зависимости от способа обслуживания бывают топки с ручным обслуживанием (см. рис. 5.6, а), немехани­зированные, полумеханизированные (см. рис. 5.6, б, в) и механизи­рованные (см. рис. 5.6, г, д). Представленные на рис. 5.6 слоевые топки могут быть разделены на три группы

Рис. 5.5. Способы сжигания твердого топлива

а – в плотном слое; б – в пылевидном состоянии; в – в циклонной топке; г – в кипящем слое.

1. Топки с неподвижной колосниковой решеткой и неподвижно л ежашим на ней плотным, фильтрующимся воздухом, слоем топл ива (см. рис. 5.6, а, в). При возрастании скорости воздуха, Исходящего через слой топлива, последний может стать «кипящим», т. е. частицы его приобретают возвратно-поступательное перещение вверх-вниз до полного сгорания. Такой слой топлива горит более интенсивно вследствие увеличения контактной по­верхности с воздухом (окислителем топлива), что улучшает ее теплопроизводительность. Процесс горения более эффективен при фракционировании топлива по размерам его кусочков.

    Топки с неподвижной колосниковой решеткой и перемеща­ ющимся по ней слоем топлива (см. рис. 5.6, б, г).

    Топки с движущимся вместе с колосниковой решеткой сло ем топлива (см. рис. 5.6, д).

Простейшая слоевая топка с неподвижной колосниковой ре­шеткой и ручным обслуживанием (см. рис. 5.6, а) применяется для сжигания всех видов твердого топлива. Такими топками оборудуют котлы лишь очень малой паропроизводительности - 0,275...0,55 кг/с (1... 2 т/ч).

В топке с неподвижной наклонной колосниковой решеткой (см. рис. 5.6, б) топливо по мере сгорания движется по решетке под действием силы тяжести. Эти топки применяют для сжигания влажных топлив (древесных отходов, кускового торфа) под кот­лами паропроизводительностью 0,7... 1,8 кг/с (2,5...6,5 т/ч).

В полумеханизированной топке (см. рис. 5.6, в), подача топлива на неподвижную колосниковую решетку осуществляется с помо­щью забрасывателя 5. В этих топках сжигают каменные и бурые угли, сортированный антрацит под котлами паропроизводитель­ностью 0,55...2,8 кг/с (2... 10 т/ч).

Простейшей механизированной топкой является топка с шу­рующей планкой (см. рис. 5.6, г). Она состоит из неподвижной лосниковой решетки, по всей ширине которой скользит план­ка б клиновидного сечения. Планка совершает возвратно-посту­пательные перемещения с помощью специального устройства. При­меняют эти топки для сжигания бурых углей под котлами паро­производительностью до 2,8 кг/с (10 т/ч).

Наиболее распространенным типом механизированной сло­евой топки является топка с цепной механической решеткой (см. рис. 5.6, д). Цепная механическая решетка выполняется в виде бесконечного колосникового полотна, движущегося вместе с лежащим на нем слоем горящего топлива. Каждая новая порция топлива, поступающая на решетку, движется вслед за слоем топлива. Скорость движения решетки можно изменять в зависимо­сти от расхода топлива (режима работы котла) от 2 до 16 м/ч.Эти топки применяют для сжигания сортированного антрацита и неспекающихся углей с умеренной влажностью и зольностью и выходом летучих веществ У т = 10...25 %. Существующие модификации топок с цепными решетками позволяют применять их для сжигания и других топлив. Топки с цепными решетками устанавлиавают под котлами паропроизводительностью 3...10 кг/с (10,5...35 т/ч) и выше.

Факельный способ. В отличие от слоевого этот процесс (См рис. 5.5, б) характеризуется непрерывностью движения в топочном пространстве частичек топлива вместе с потоком воздуха и продуктов сгорания, в котором они находятся во взвешенном состоянии.

Для обеспечения устойчивости и однородности горящего фа­кела, а следовательно, и газовоздушного потока с взвешенным в нем топливом частички твердого топлива размалываются до пылевидного состояния, до размеров, измеряемых микронами (от 60 до 90 % всех частиц имеют размер менее 90 мкм). Жидкое топливо предварительно распыливается в форсунках в очень мел­кие капли, чтобы капельки не выпадали из потока и успевали полностью сгореть за короткое время нахождения в топке. Газо­образное топливо подается в топку через горелки и не требует I особой предварительной подготовки.

Особенностью факельных топок является незначительный за­пас топлива в топочной камере, отчего процесс горения неустой­чив и весьма чувствителен к изменению режима. Регулировать мощ­ность топки можно, лишь одновременно изменяя подачу в топоч­ную камеру топлива и воздуха. При факельном сжигании (рис. 5.7 твёрдое топливо предварительно размельчается в системе пылеприготовления и в виде пыли вдува­ется в топку, где оно сгорает во взвешенном состоянии. Размол топлива резко увеличивает повер­хность его реагирования, что спо­собствует лучшему сгоранию.


Основными достоинствами пы­левидного способа сжигания явля­ются возможность создания мощных топок и возможность эконо­мичного и надежного сжигания зольных, влажных и отбросных топлив под котлами разных мощностей.

К недостаткам этого способа можно отнести высокую стоимость оборудования системы пылеприготовления, расход электроэнергии на размол, более низкие удельные тепловые нагрузки камеры горения (примерно вдвое), чем при слоевых топках, что заметно увеличивает объемы топочных пространств.

Пылеприготовление из кускового топлива состоит из следующих операций:

удаление из топлива металлических предметов при помощи магнитных сепараторов;

дробление крупных кусков топлива в дробилках;

сушка и размол топлива в специальных мельницах.

При рабочей влаге W Р < 20 % сушка топлива производится в мельнице одновременно с процессом размола, для чего в мельницу подается горячий воздух из воздухоподогревателя котла. Тем­пература воздуха доходит до 400 °С, и он одновременно служит для выноса пыли из мельницы.

При размоле топлива образуются пылинки размером 0...500 мк. Основной характеристикой пыли является тонкость ее помола, ко­торая по ГОСТ 3584-53 характеризуется остатком на ситах с ячей­ками 90 и 200 мк, обозначаемые R 90 и R 2 оо. Так, R 90 = 10 % означает, что на сите с размером ячеек 90 мк осталось 10 % пыли, а вся остальная пыль прошла через сито.

Оптимальная тонкость помола (тонина) определяется суммар­ным фактором: минимальным расходом электроэнергии на помол топлива и потерями от механического недожога. Тонкость помола зависит от реакционной способности топлива, характеризуемой в основном выходом летучих веществ. Чем выше содержание в топливе ле­тучих веществ, тем грубее помол.

Размольные свойства топлива ха­рактеризуются коэффициентом размолоспособности, (для антрацита Кло = 1; для тощего угля К ло = 1,6; Для подмосковного бурого угля Кл 0 = 1,75).

Широкое распространение получили индивидуальная схема пыле­приготовления и схема пылеприготовления с промежуточным бункером- На рис. 5.8 показана схема индвиидуального пылеприготовления, которой пыль из мельницы непосредственно поступает в топку. В этой схеме из бункера сырого угля 4 топливо подается на автоматические весы 3, а затем в питатель 2. Отсю­да топливо направляется в шаровую барабанную мельницу (ШБМ) , где оно размалывается и подсушивается, для чего в барабан мель­ницы вдувается горячий воздух. Из мельницы пыль выносится в се­паратор 5, где готовая пыль отделяется от грубых фракций, которые возвращаются в мельницу. Готовая пыль из сепаратора нагнетается мельничным вентилятором б через горелки 7 в топочное простран­ство котла. Производительность мельницы регулируется изменением подачи топлива питателем с одновременным изменением числа обо­ротов мельничного вентилятора.

Основными недостатками этой схемы являются отсутствие за­паса пыли, что снижает надежность работы котла, и сильный из­нос мельничного вентилятора, через который пропускается вся угольная пыль.


На рис. 5.9 дана схема пылеприготовления с промежуточным бункером. Отличие ее состоит в том, что за сепаратором ставится циклон 6, в который и направляется готовая пыль. В циклоне 90...95% пыли отделяется от воздуха и осаждается, а затем на­правляется в промежуточный бункер 9. Пыль из циклона в бункер спускается через клапаны (мигалки) 8, которые открываются при давлении на них определенной порции пыли. Воздух с остат­ком тонкой пыли отсасывается из циклона мельничным вентилятором 12 и нагнетается в трубопровод первичного воздуха, куда в свою очередь поступает пыль из промежуточного бункера с помо­щью шнековых или лопастных пылепитателей 10. Схема пылеприготовления с промежуточным бункером, как наиболее гибкая и надежная, получила наиболее широкое распространение.

Для размола топлива применяют мельницы различных типов. Выбор типа мельницы зависит от размольных характеристик топлива, выхода летучих веществ и влажности топлива. Различают мельницы тихоходные и быстроходные.

Для размола антрацита и каменных углей с небольшим выхо­дом летучих веществ, сжигаемых котлоагрегатами средней и большой паропроизводительности, применяют тихоходные ша­ровые барабанные мельницы (ШБМ).(Рис.5.10). Основными достоинствами барабанной мельницы являются хорошая регулируемостьтонкости помола, и надежность помола. К недостаткам этих мельниц следует отнести: громозкость, высокую стоимость, повышенный удельный расход электроэнергии, значительный шум, сопровождающий работу мельницы.

Быстроходные мельницы применяют двух типов: молотковые и мельницы-вентиляторы.

Молотковые мельницы с аксиальным (ММА) или тангенциальным (ММТ) подводом сушильного агента применяют для размола бурых углей, сланцев, фрезерного торфа и каменных углей с выходом летучих веществ V г > 30 %. Устанавливают их с котлоагрегатами производительностью свыше 5 кг/с (рис.5.11).К достоинствам молотковой мельницы следует отнести ее ком­пактность, простоту эксплуатации и небольшой удель­ный расход электроэнергии. Основным недостатком этих мельниц является быстрый износ бил, вызывающий за­метное снижение производи­тельности мельницы.

Мельница-вентилятор (МБ) предназначена для размола, главным образом, высоковлажных бурых углей и фрезерного торфа. Применяют топки с МВ в котлоагрегатах средней произ­водительности. Мелющим органом МВ является массивная крыль­чатка 1 (рис. 5.12) с частотой вращения 380... 1470 об/мин, рас­положенная в бронированном корпусе 6.

В ихревой способ. В рассмотренных факельных топках частицы топлива сгорают в объеме топки на лету. Длительность пребыва­ния их в топочном пространстве не превышает времени "пребыва­ния продуктов сгорания в топке и составляет 1,5... 3 с. В циклон­ных топках, которые предназначены для сжигания мелкодробле­ного топлива и грубой пыли, крупные частицы угля находятся во взвешенном состоянии столько времени, сколько это необходи­мо для полного выгорания их независимо от длительности пребы­вания продуктов сгорания в топке.

В них сжигают достаточно мелкие частицы угля (обычно мельче 5 мм), а необходимый для горения воздух подают с огромными (до 100 м/с) скоростями по касательной к образующей циклона-В топке создается мощный вихрь, вовлекающий частицы в циркуляционное движение, в котором они интенсивно обдуваются потоком (см. рис. 5.5, в).

Значительная удельная поверхность мелких частиц, большие зна­чения коэффициентов массоотдачи между потоком и частицами высокие концентрации горючего в камере обеспечивают получение больших теплонапряжений объема топки (q= 0,65... 1,3 МВт/м 3 при a= 1,05... 1,1), в результате чего в топке развиваются температуры, близкие к адиабатным (до 2000 °С). Зола угля плавится, жидкий шлак, стекая по стенкам, тормозит движение частиц, налипающих на его поверхность, что еще больше увеличивает скорость их омывания потоком, а значит и коэффициент массоотдачи.

Поскольку центробежный эффект уменьшается с увеличением радиуса циклона, диаметр последнего обычно не превышает 2 м, что позволяет получить тепловую мощность 40...60 МВт.

В нашей стране применяются в основном технологические цик­лонные топочные камеры, например для сжигания серы (в целях получения SО 2 - сырья для производства Н 2 SО 4 ; при этом ис­пользуется и теплота горения), для плавления и обжига руд и нерудных материалов (например фосфоритов) и т.д. В последнее время в циклонных топках осуществляют огневое обезвреживание сточных вод, т. е. выжигание содержащихся в них вредных приме­сей за счет подачи дополнительного (обычно газообразного или жидкого) топлива.

В топочных камерах, в которых топливо сгорает при высоких температурах, образуется большое количество крайне токсичных оксидов азота. Предельно допустимая концентрация (ПДК) N0, безопасная для здоровья людей, в воздухе населенных пунктов составляет 0,08 мг/м 3 .

Поскольку образование оксидов азота существенно уменьша­ется при снижении температуры, в последние годы энергетики проявляют все больший интерес к так называемому низкотемпе­ратурному (в отличие от высокотемпературного - с температу­рой 1100°С и выше) сжиганию в псевдоожиженном слое, когда устойчивое и полное горение каменных и бурых углей удается обеспечить при 750...950 "С.

Сжигание в кипящем слое. Слой мелкозернистого материала, продуваемый снизу вверх воздухом со скоростью, превышающей предел устойчивости плотного слоя, но недостаточной для выно­са частиц из слоя, создает циркуляцию. Интенсивная циркуляция частиц в ограниченном объеме камеры создает впечатление бурно кипящей жидкости. Значительная часть воздуха проходит через такой слой в виде пузырей, сильно перемешивающих мелкозернистый материал, что еще больше усиливает сходство с кипящей жидкостью и объясняет происхождение названия.

Способ сжигания в псевдосжиженном (кипящем) слое (см. рис. 5.5, г) является в определенном смысле промежуточным между слоевым и камерным. Его преимуществом является возможность сжигания относительно мелких кусочков топлива (обычно мельче 5... 10 мм) при скорости воздуха 0,1...0,5 м/с.

Топки с кипящим слоем широко используются в промышленности для сжигания колчеданов в целях получения SО 2 , обжига различных руд и их концентратов (цинковых, медных, никелевых, золотосодержащих) и т. д.

Способы сжигания твердого топлива.

Основные месторождения ископаемых топлив.

Размещение ископаемых твердых топлив по терри­тории СССР крайне неравномерно. Наиболее развитые в промышленном отношении районы европейской части СССР бедны топливом. Здесь наибольшее значение име­ет Донецкий бассейн, располагающий каменными угля­ми различных марок и антрацитами, но запасы топлива в нем уже не удовлетворяют потребности. Вместе с тем, слабые по мощности пласты, добыча из глубоких шахт делают это топливо дорогим (14-16 руб/т условного топлива). Основная масса ископаемых топлив нахо­дится Центральной и Западной Сибири, Казахстане. Эти топлива дешевле донецких (8-10 руб/т услов­ного топлива - шахтная добыча и 4 руб/т условного топлива - открытая добыча в разрезах). Даже с уче­том стоимости перевозки они оказываются дешевле в европейской части СССР, чем донецкие. Имеются запасы бурых углей в Канско-Ачинском бассейне (Центральная Сибирь). Близкое расположение к по­верхности земли, мощные пласты позволяют развер­нуть открытую добычу этого топлива, что делает его наиболее дешевым топливом СССР (расчетные затра­ты 2,5-3 руб/т условного топлива). Такими же характеристиками обладает Экибастузское месторождение ка­менных углей (Восточный Казахстан). Применительно к канско-ачинским бурым углям разрабатывается так­же план комплексной энерготехнологической их пере­работки с получением ценных химических веществ, буроугольного мазута и коксика - топлива с высокой теплотой сгорания (около 29,3 МДж/кг).

Запасы нефти интенсивно разрабатываются в Тю­менской, области. Добыча нефти и газового конденсата в этом районе составляет около 50% всœей добычи в стране.

Месторождения природного газа имеются во мно­гих районах нашей страны. К наиболее известным от­носятся Шебелинское, Дашавское, Газлийское. В по­следние годы открыты и начали активно эксплуатироваться уникальные месторождения в Туркмении, на Южном Урале и в Тюменской области (Шатлыкское, Оренбургское, Медвежье, Уренгойское, Ямбургское). Запасы газа здесь составляют почти 50% всœех извест­ных запасов природного газа в стране. Открыты запа­ек газа и нефти на территории Коми АССР. Близость этого района к промышленным центрам европейской части СССР заставляет ускоренно развивать добычу топлива в этом трудном по природным и климатиче­ским условиям районе. Данные приведены в ценах 1977 ᴦ.

Сжигание твердого топлива в топочных устройствах может быть организовано различ­ными способами: факельным, циклонным, в кипящем слое (рис. 1.7). Из них наиболее распространенным в современной крупной энергетике является факельный.

В основу классификации способов сжига­ния положена аэродинамическая характери­стика процесса, определяющая условия омывания горящего топлива окислителœем.

Практически неограниченное повышение мощности топочных устройств связано со сжиганием угольной пыли в объеме топочной камеры во взвешенном состоянии. Такой спо­соб сжигания топлива принято называть факельным . При этом мелкие частицы топли­ва легко транспортируются потоком воздуха и образующихся газов в сечении топочной каме­ры. Сгорание топлива происходит в этом слу­чае в объеме топочной камеры за весьма ограниченное время пребывания частиц в топ­ке (1-2 с). Скорость сгорания топлива, определяется поверхностью горения.

При циклонном способе сжигания частицы топлива находятся в интенсивном вихревом движении. В отличие от факель­ного способа сжигания частицы топлива под­вергаются интенсивному обдуванию потоком и быстро сгорают. Циклонный способ позволяет сжигать более грубую угольную пыль и даже дробленку. В циклоне развивается более вы­сокая температура горения, отчего шлаки пе­реходят в жидкое состояние.

В последнее время находит применение новый для энергетики способ сжигания топлива в так называемом кипящем слое (рис. 1.7,в). Находящееся на решетке измельченное топливо с частицами размером 1-6 мм продувается потоком воздуха с такой скоростью, что частицы всплывают над решеткой и совершают воз­вратно-поступательные движения в вертикальной плос­кости. При этом скорость газовоздушного потока в пределах кипящего слоя больше, чем над ними. Бо­лее мелкие и частично выгоревшие частицы поднимают­ся в верхнюю часть кипящего слоя, где скорость потока снижается, и там сгорают. Кипящий слой увеличивает­ся в объеме в 1,5-2 раза, его высота обычно со­ставляет 0,5-1 м.

Тепловоспринимающие поверхности в виде кори­дорного, или шахматного пучка труб размещают внутри объема кипящего слоя и над ним. За счет развитой кондуктивной (контактной) передачи теплоты от рас­каленных частиц к поверхности нагрева удельное тепловосприятие поверхностей в пределах кипящего слоя существенно возрастает. При этом температура газов вгорящем слое остается относительно невысокой (800-1000°С), что исключает перегрев металла и уменьшает образование вредных окислов азота в про­дуктах сгорания. Вместе с тем, такой способ сжигания позволяет вводить в кипящий слой твердые присадки (к примеру, известняк) для нейтрализации образующих­ся окислов серы.

Крупные электростанции потребляют бо­лее 1000 т/ч угля. Даже при доставке топли­ва вагонами большей грузоподъемности (60 - 125 т) на электростанции крайне важно посто­янно разгружать за 1 ч 15-30 вагонов топ­лива, что обеспечивается применением для разгрузки вагонов высокопроизводительных вагоноопрокидывателœей.

Превращение кускового топлива в уголь­ную пыль производится в два этапа. Вначале сырое топливо подвергается дроблению до размера, не превышающего 15 - 25 мм. Затем измельченное топливо - дробленка поступает в бункера сырого угля, пос­ле чего подвергается размолу в углеразмольных мельницах до окончательного продукта - угольной пыли с размером частиц до 500 мкм. Одновременно с размолом топливо подсуши­вается для обеспечения хорошей текучести пыли.

1 ВИДЫ ТОПЛИВА

Твёрдое топливо - горючие вещества, основной составной частью которых является углерод. К твердому топливу относят каменный уголь и бурые угли, горючие сланцы, торф и древесину. Свойства топлива в значительной степени определяются его химическим составом - содержанием углерода, водорода, кислорода, азота и серы. Одинаковые количества топлива дают при сжигании различное количество теплоты. Поэтому для оценки качества топлива определяют его теплотворную способность, то есть наибольшее количество теплоты, выделяющееся при полном сгорании 1 кг топлива (наибольшая теплотворная способность у каменного угля). В основном твёрдое топливо применяют для получения теплоты и других видов энергии, которые затрачиваются на получение механической работы. Кроме того, из твёрдого топлива при его соответствующей обработке (перегонке) можно получить более 300 различных химических соединений, большое значение имеет переработка бурого угля в ценные виды жидкого топлива - бензин и керосин.

Брикеты

Брикеты - это твердое топливо, образованное в процессе сжатия отходов процесса деревообработки (стружка, щепки, древесная пыль) а также хозяйственные отходы (солома, шелуха), торфа.

Топливные брикеты удобны для хранения, при изготовлении не используются вредные связующие вещества, потому данный вид топлива экологически чист. При горении не искрят, не выделяют чадного газа, горят равномерно и плавно, чем обеспечивают достаточно долгий процесс сгорания в камере котла. Помимо твердотопливных котлов используются в домашних каминах и для приготовления пищи(на гриле например).

Существует основных 3 вида брикетов:

1. RUF -брикеты. Формированные “кирпичики” прямоугольной формы.

2. NESTRO -брикеты. Цилиндрической формы, также могут быть с отверстиями внутри (кольца).

3. Р ini &Кау - брикеты. Граненые брикеты (4,6,8 граней).

Преимущества топливных брикетов:

    Экологически чисты.

    Долгое и удобное хранение. Благодаря термической обработке не подвержены воздействию грибков. А благодаря формированию удобно используются.

    Долгое и ровное горение обусловлено высокой степенью плотности брикетов.

    Высокая теплотворность. Почти в два раза выше чем у обычных дров.

    Постоянная температура горения. За счёт равномерной плотности.

    Экономически выгодны.

    Минимальное количество золы после горения: 1-3%

Пеллеты или топливные гранулы.

По сути тот же принцип производства что и у брикетов. В качестве связующего вещества используется лигнин (растительный полимер).

Материалы те же что и у брикетов: кора, стружка, солома, картон. Сначала сырьё измельчается до состояния пыльцы, затем, после сушки, специальный гранулятор формирует из массы гранулы специальной формы. Используется в пеллетных котлах отопления. Цены на твёрдое топливо данного вида самые высокие - это обосновано сложностью производства и популярностью у покупателей.

Различают следующие виды данного твердого топлива:

    Переработка кругляка твердых и мягких пород деревьев в пеллеты.

    Торфяные пеллет

    Пеллеты полученные в результате переработки подсолнечной шелухи.

    Пеллеты из соломы

    Преимущества пеллет:

    Экологически чисты.

    Хранение. Пеллеты благодаря особой технологий производства могут храниться прямо под открытым небом. Они не разбухают, не покрываются грибком.

    Долгое и ровное горение.

    Низкая стоимость.

    Благодаря мелкой форме, пеллеты подходят для котлов с автоматической загрузкой.

    Широкий спектр применения(котлы, печи, камины)

Дрова

Деревянные куски, предназначенные для получения тепла путём сжигания в котлах для отопление на твердом топливе, топках предусмотренных для дров. Для удобства длина поленьев чаще всего 25-30 см. Для наиболее эффективного использования" необходим максимально низкий уровень влаги. Для отопления необходимо как можно более медленное сгорание. Также помимо отопления, дрова могут использоваться например в бойлерах для твёрдого топлива. Лучше всего по этим параметрам подходят лиственные породы: дуб, ясень, лещина, боярышник, берёза. Хуже - хвойные дрова, так как способствуют отложению смолы и имеют низкую теплотворность, при этом быстро прогорают.

Дрова представлены двумя видами:

    Пиленные.

    Колотые.

2 СОСТАВ ТОПЛИВА

Для образования угля необходимо обильное накопление растительной массы. В древних торфяных болотах, начиная с девонского периода, накапливалось органическое вещество, из которого без доступа кислорода формировались ископаемые угли. Большинство промышленных месторождений ископаемого угля относится к этому периоду, хотя существуют и более молодые месторождения. Возраст самых древних углей оценивается примерно в 350 миллионов лет. Уголь образуется в условиях, когда гниющий растительный материал накапливается быстрее, чем происходит его бактериальное разложение. Идеальная обстановка для этого создаётся в болотах, где стоячая вода, обеднённая кислородом, препятствует жизнедеятельности бактерий и тем самым предохраняет растительную массу от полного разрушения? На определённой стадии процесса выделяемые в ходе его кислоты предотвращают дальнейшую деятельность бактерий. Так возникает торф - исходный продукт для образования угля. Если затем происходит его захоронение под другими наносами, то торф испытывает сжатие и, теряя воду и газы, преобразуется в уголь. Под давлением наслоений осадков толщиной в 1 километр из 20- метрового слоя торфа получается пласт бурого угля толщиной 4 метра. Если глубина погребения растительного материала достигает 3 километров, то такой же слой торфа превратится в пласт каменного угля толщиной 2 метра. На большей глубине, порядка 6 километров, и при более высокой температуре 20-и метровый слой торфа становится пластом антрацита толщиной в 1,5 метра. В результатах движения земной коры угольные пласты испытывали поднятие и складкообразование. С течением времени приподнятые части разрушались за счет эрозии или самовозгорания, а опущенные сохранялись в широких неглубоких бассейнах, где уголь находится на уровне не менее 900 метров от земной поверхности.

Бурые угли. Содержат много воды (43 %), и поэтому имеют низкую теплоту сгорания. Кроме того, содержат большое количество летучих веществ (до 50 %). Образуются из отмерших органических остатков под давлением нагрузки и под действием повышенной температуры на глубинах порядка 1 километра.

Каменные угли. Содержат до 12 % влаги (3-4 % внутренней), поэтому имеют более высокую теплоту сгорания. Содержат до 32 % летучих веществ, за счёт чего неплохо воспламеняются. Образуются из бурого угля на глубинах порядка 3 километров.

Антрациты. Почти целиком (96 %) состоят из углерода. Имеют наибольшую теплоту сгорания, но плохо воспламеняются. Образуются из каменного угля и в виде окислов НО х . Они относятся к вредным составляющим продуктов сгорания, количество которых должно лимитироваться.

Сера - содержится в твердом топливе в виде органических соединений SO и колчедана S x их объединяют в летучую серу S л . Еще сера входит в состав топлива в виде сернистых солей - сульфатов - не способных гореть. Сульфатную серу принято относить к золе топлива. Присутствие серы значительно снижает качество твердого топлива, так как сернистые газы SO 2 и SO 3 соединяясь с водой образуют серную кислоту - которая в свою очередь разрушает метал котла, и попадая в атмосферу вредит окружающей среде. Именно по этой причине содержание серы в топливе - не только в твердом - крайне нежелательно.

Зола - топлива представляет собой балластную смесь различных минеральных веществ, остающихся после полного сгорания всей горючей части города. Зола непосредственно влияет на качество сгорания топлива - уменьшает эффективность горения.

Вопросы:

1. Назовите основные виды твердого топлива?

2. Что такое зола?

3 ПРИМЕНЕНИЕ ТОПЛИВА

Применение каменного угля многообразно. Он используется как бытовое, энергетическое топливо, сырье для металлургической и химической промышленности, а также для извлечения из него редких и рассеянных элементов. Очень перспективным является сжижение (гидрогенизация) угля с образованием жидкого топлива. Для производства 1 тонны нефти расходуется 2-3 тонны каменного угля, некоторые страны практически полностью обеспечивали себя топливом за счёт этой технологии. Из каменных углей получают искусственный графит.

От каменного угля бурый уголь внешне отличается цветом черты на фарфоровой пластике - она всегда бурая. Самое важное отличие от каменного угля заключается в меньшем содержании углерода и значительно большем содержании битуминозных летучих веществ и воды. Этим и объясняется, почему бурый уголь легче горит, даёт больше дыма, запах, а также и вышеупомянутую реакцию с едким калием и выделяет мало тепла. Из-за высокого содержания воды для сжигании его применяют в порошке,в который он неминуемо превращается при сушке. Содержание азота значительно уступает каменным углям, но повышенное содержание серы.

Применение бурого угля - как топливо, бурый уголь во многих странах употребляется значительно меньше, чем каменный уголь, однако из-за низкой стоимости в мелких и частных котельных он более популярен и занимает иногда до 80%. Применяется для пылевидного сжигания (при хранении бурый уголь высыхает и рассыпается), а иногда и целиком. На небольших провинциальных ТЭЦ он также нередко сжигается для получения тепла.Однако в Греции и особенно в Германии бурый уголь используется в паровых электростанциях вырабатывая, до 50% электроэнергии в Греции и 24,6 % в Германии. С большой скоростью распространяется получение жидких углеводородных топлив из бурого угля перегонкой. После перегонки остаток годится для получения сажи. Из него извлекают горючий газ, получают углещелочные реагенты и метан- воск (горный воск). В мизерных количествах он применяется и для поделок.

Торф – горючее полезное ископаемое, образующееся в процессе естественного отмирания и неполного распада болотных растений в условиях избыточного увлажнения и затрудненного доступа воздуха. Торф представляет собой продукт первой стадии угле образовательного процесса. Первые сведения о торфе как о «горючей земле», применяемой для приготовления пищи относятся к 26 веку нашей эры.

Осадочная порода растительного происхождения, состоит из углерода и других химических элементов. Состав угля зависит от возраста: старше всех антрацит, моложе каменный уголь, самый молодо- бурый. В зависимости от старения имеет разную влажность.Чем моложе – тем больше влаги. Уголь в процессе горения загрязняет окружающую среду, плюс спекается в шлак и оседает на колосниках в котле. Это в препятствует нормальному горению.

Вопросы:

    Область применения топлива?

    Наносит ли вред окружающей среде сжигание топлива, и какой вид наиболее ?

4 СПОСОБЫ СЖИГАНИЯ ТОПЛИВА

Существует три способа сжигания топлива: слоевое, факельное или камерное и вихревое.

1 – колосниковая решетка; 2 – дверка запальника; 3 – загрузочная дверка; 4 – поверхности нагрева; 5 – топочная камера.

Рисунок 4.1 – Схема слоевой топки

На данном чертеже показан слоевой способ сжигания топлива, где слой кускового топлива лежит неподвижно на решетке и продувается воздухом.

Слоевой способ применяется для сжигания твердого топлива.

А здесь показан факельный и вихревой способ сжигания топлива.

1 – горелка; 2 топочная камера; 3 – обмуровка; 4 – топочный экран; 5 - потолочный радиационный пароперегреватель; 6 – фестон.

Рисунок 4.2 – Камерная топка

Рисунок 4.3 - Вихревой способ сжигания топлива

При факельном и вихревом способе могут сжигаться все виды топлива, только твердое топливо предварительно подвергается разлому, превращая его в пыль. При сжигании топлива все тепло передается продуктам сгорания. Такая температура называется теоретической температурой горения топлива.

В промышленности для сжигания твердого топлива используются котлы непрерывного действия. Принцип непрерывности поддерживается за счет колосниковой решетки, на которую постоянно подается твердое топливо.

Для более рационального сжигания топлива сооружаются котлы, которые способны сжигать его в пылеобразном состоянии. Таким же образом сжигается и жидкое топливо.

Вопросы:

    Какой способ сжигания наиболее рациональный?

    Объяснить достоинства камерного способа сжигания.

5 РАБОЧИЕ ПРОЦЕССЫ В КОТЛАХ

Рабочие процессы в котлах:

    Образования пара

В котельных установках происходят такие процессы как образование пара:

    Условия, при которых происходит образование пара в котлах - постоянное давление и непрерывный подвод тепла.

    Стадии процесса парообразования: подогрев воды до температуры насыщения, парообразование и нагрев пара до заданной температуры.

Еще в котлах можно наблюдать коррозию поверхностей нагрева:

    Разрушение металла под действием окружающей среды называют коррозией.

Коррозия со стороны продуктов сгорания называется - наружной, а со стороны нагреваемой среды – внутренней.

Существует низкотемпературная и высокотемпературная коррозия.

Чтобы уменьшить разрушающую силу коррозии, необходимо следить за водным режимом котла. Поэтому сырую воду перед использованием для питания котлов предварительно обрабатывают с целью улучшения ее качества.

Качество котловой воды характеризуется сухим остатком, общим солесодержанием, жесткостью, щелочностью и содержанием коррозионноактивных газов

    Натрий-катионный фильтр – где происходит очистка воды

    Деаэратор – происходит удаление агрессивных средств, кислорода воздуха и углекислого газа.

    Образцы труб, которые снаружи и внутри подверглись коррозии.

Коррозия поверхностей нагрева

Внутренняя коррозия паровых и водогрейных котлов в основном бывает следующих видов: кислородная, пароводяная, щелочная и подшламовая.

Основным появлением кислородной коррозии являются язвы, обычно с оксидами железа.

Пароводяная коррозия наблюдается при работе котлов с повышенными тепловыми нагрузками. В результате этой коррозии, на внутренних поверхностях экранных труб и хрупких повреждений в местах упаривания котловой воды.

В результате подшламовой коррозии образуются раковины.

Наружная коррозия может быть низкотемпературной и высокотемпературной.

Низкотемпературная коррозия может происходить при сжигании любого топлива. Высокотемпературная коррозия может происходить при сжигании мазутов.

Топочные устройства или топка является основным элементом котельного агрегата или огневой печи и служит для сжигания топлива наиболее экономичным способом и превращении наиболее экономичным способом и превращении его химической энергии в тепло. Существуют следующие основные способы сжигания твердого топлива: 1) слоевой; 2) факельный (камерный); 3) вихревой; 4) сжигание в кипящем слое. Для сжигания жидких и газообразных топлив применяют только факельный способ. 1. Слоевой способ – процесс сжигания осуществляется в слоевых топках. Слоевые топки можно разделить на 3 группы: 1) топки с неподвижной колосниковой решеткой и неподвижно лежащим на ней плотным слоем топливом. При возрастании скорости топлива, проходящего через слой топлива. Последний может стать кипящим. Такой слой топлива горит более интенсивно вследствие увеличения контактной поверхности с воздухом. 2. Топки с неподвижной колосниковой решеткой и перемещающихся по ней слоев топлива. 3. Топки с движущимся вместе с колосниковой решеткой слоем топлива.

1 – зольник; 2 – колосниковая решетка; 3 – слой топлива; 4 – топочная камера; 5 – фурма для подачи воздуха; 6 – окно для подачи топлива.

Топка предназначена для сжигания всех видов топлива.

Стандартная колосниковая решетка типа РПК – Состоит из колосников, набранных в несколько рядов и насаженных валы прямоугольного сечения. При повороте валов на поворотный угол 30 0 ряды колосников наклоняются под тем же углом, и через образовавшиеся просветы шлак с решетки просыпается в зольник. Решетки имеют размеры в ширину от 900 до 3600 мм и в длину от 915 до 3660 мм. Наиболее распространенным типом слоевых топок является механизированная слоевая топка с цепной механической передачей. Механическая решетка выполняется в виде бесконечного колосникового полотна движущегося глубину топки вместе с лежащим на нем слоем горящего топлива. Топливо проходит, все стадии горения и в виде пыли ссыпается в шлаковый бункер. Скорость движения решетки можно изменять в зависимости от расхода топлива от 2 до 16 м/ч. Эти топки применяются для сжигания сортированного антрацита с размером кусков до 40 мм. Особенностью слоевых топок является наличие запаса топлива на решетке что позволяет регулировать мощность топки изменением количества подаваемого воздуха и обеспечивает устойчивость процесса горения. Слоевой способ не пригоден для крупных энергетических установок, а в установках малой и средней мощности данный способ находит широкое применение. 2. Факельный способ. В отличие от слоевого характеризуется непрерывностью движения в топочном пространстве частичек топлива вместе с потоком воздуха и продуктов горения, в котором они находятся во взвешенном состоянии. На рисунке показана камерная топка с факельным сжиганием топлива. Она состоит из горелки 1. топочной камеры 2, кипятильных труб3, труб заднего экрана 4, шламовой воронки 5. Предварительно измельченное топливо виде угольной пыли и газовая смесь подаются в горелку 1, туда же через ряд отверстий вдувается вторичный воздух. Газовоздушный поток с взвешенными частицами твердого топлива зажигается на выходе из горелки в топку 2. В топочной камере топливо сгорает с образованием горящего факела. Тепло выделяемое при сжигании топлива в виде излучения и конвективным путем передается воде циркулирующей в кипятильных трубах и трубах заднего экрана. Остаток от сгоревшего топлива поступает, шлаковую воронку, а затем выводится. Основным достоинством данного способа сжигания является возможность создания мощных топок паропроизводительностью до 2000 т/ч и возможность экономичного и надежного сжигания зольных, влажных и отбросных топлив под котлами различной мощности. К недостаткам данного способа можно отнести: 1) Высокую стоимость системы пылеприготовления; 2) Высокий расход электрической энергии на размол; 3) Несколько пониженные тепловые нагрузки камеры сгорания, чем у слоевых топок, что способствует условию объемов топочных пространств. Пылеприготовление из кускового топлива состоит из следующих операций: 1. Удаление из топлива металлических предметов с помощью магнитных сепараторов. 2. Дробление крупных кусков топлива в дробилках до размера 15-25 мм. 3. Сушка и размол топлива в специальных мельницах и классификация топлив. 4. Классификация. Для дробления крупных кусков можно использовать шаровые, валковые, конусные дробилки. В качестве размалывающего оборудования в системе пылеприготовления используется тихоходные шаровые барабанные мельницы, быстроходные молотковые мельницы с аксиальным и тарельчатым подводом сушильного агента. Для сжигания пылевидного топлива применяются круглые и щелевые горелки. Они размещаются фронтально передней стенке топки, встречно на боковых стенках, а также по углам топки. Для фронтального и встречного распыления применяют круглые турбулентные горелки, создающие короткий факел.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.