Магнито абразивная обработка деталей нашла на заводах. Применение процесса магнитно-абразивного полирования для улучшения качества поверхностей трения

Cущность магнитно-абразивной обработки (МАО) основана на способности ферромагнитной массы, размщённой в магнитном поле, без каких-либо механизмов-преобразователей оказывать абразивное воздействие на обрабатываемую поверхность заготовок. МАО относят к отделочным видам обработки. Движение резания при этом может сообщаться как заготовке, так и инструменту.

В первом случае заготовка помещается между полюсными наконечниками электромагнита с некоторыми зазорами, в которые подеется порошок, обладающий магнитными и абразивными свойствами. Детали сообщают вращательное и осциллирующее (вдоль оси) движения. Силами магнитного поля зёрна ферромагнитного порошка удерживаются в зазорах, и, прижимаясь к поверхности детали, обрабатывают её. В рабочие зазоры подают также СОЖ (эмульсол, керосин).

МАО прменяют для обработки деталей из сталей, чугунов, цветных металлов и сплавов, пластмасс, стекла, предварительно обработанных точением, фрезерованием, шлмфованием. По сравнению с традиционными методами абразисвной обработки МАО обеспечивает повышение производительности труда в 3…5 раз, а при полировании сферических линз из стекла – в 5…6 раз. При этом затраты на абразивный инструмент снижаются в 2…3 раза.

С помощью МАО можно снизить исходную шероховатость с Ra=1,25…3,2 мкм доRa=0,08…0,01мкм; волнистость – в 8…10 раз, гранность - в 1,5…2 раза. Точность размеров и формы – не изменяются. Основные преимущества МАО – возможность обработки сверхтонких изделий (h=0,05…0,5 мм), изделий неправилбной геометрической формы, возможность обнаружения дефектов предшествующей обработки (трещины, прижоги…)

В качестве оборудования при МАО используют как универсальные МРС, так и специальные высокопроизводительные установки.

1. Для полирования валов можно применять токарно-винторезные станки со специально изготовленным магнитным индуктором, устанавлиаемым на суппорт станка, и с дополнительным осциллирующим передним центром.

Для полирования плоскостей применяют следующие схемы МАО:

    На плоскршлифовальном станке с горизонтальным шпинделем. В шпиндель станка вместо абразивного круга закрепляют электромагнитнй диск, на периферии которого в магнитном поле равномерно наращивается щётка из ферромагнитного абразивного материала. При вражении они полируют заготовки из немагнитного материала. Электромагнитный диск может состоять из нескольких П-образных элементарных магнитов или из кольцевых соленоидов со стальными сердечниками, установленными в шпинделе на оправке. Питание электромагнитов осуществляется постоянным током. На корпусе шлифовальной бабки рядом с вращающимся электромагнитным диском устанавливают бункер с абразивной ферромагнитной крошкой. Открывая бункер при вращении диска, абразивная среда равномерно наносится на поверхность диска. Зёрна абразивной среды располагаются вдоль силовых линий поля и прижимаются к цилиндрической поверхности диска. Образовавшаяся щётка достаточно эластична и хорошо самозатачивается. Отработавшая абразивная среда удаляется выключением электромагнита. Зазор между образующей диска и заготовкой устанавливают δ=4…6мм.

Полирование плоскостей магнитопроводных заготовок и тонких немагнитных может быть реализовано на вертикально-фрезерном станке, в шпиндель которого вставляют магнитный индуктор для плоского шлифования.

    Для МАО внутренних цилиндрических поверхностей используют специальные станки, где внутрь детали вводят один полюсный наконечник, на который подаётся порошок вместе с СОЖ, а наружные полюсные наконечники охватывают деталь, совершающую вращательное движение, а осциллирующее движение совершает внутренний наконечник.

В качестве абразивных материалов для МАО пименяют керметы, получаемые пресованием абразивной и ферромагнитной составляющей, а также чугунные и стальные опилки. В керметах абразивная составляющая может быть из электрокорунда белого, карбида хрома, карбида титана, карбида кремния. Массовая доля железа составляет 70…80 5. Оптимальная зернистость должна быть в пределах 125…315 мкм.

Режимы МАО обусловлены параметрами, характеризующими механическое движение детали и магнитного индуктора, размерами, конфигурацией рабочих зазоров, напряжённостью магнитного поля свойствами кермета и СОЖ. Так, для полирования стальныхзаготовок d=20…100 мм используют следующие режимы:v з =1…2м/c,v осц =8…10 Гц,S=6…8м/мин, кермет ЭБМ40+80%Fe, зернистость 160…250 мкм, магнитная индукция 1…1,3 Тл, рабочий зазор 1…1,5 мм, длина плоских наконечников 60…80 мм, угол охвата детали полюсами 90˚, СОЖ – 5% раствор эмульсола Э2 в воде. За 10…15 с шероховатость сRa=0,16…0,08 мкм становилась равнойRa= 0,04…0,02 мкм.

По сравнению с финишными процессами, где используется абразивный инструмент на жёсткой связке, МАО вызывает незначительный нагрев изделия: без СОЖ до температуры Т=270…300˚С, с применением СОЖ до температуры Т=45…55˚С.

В настоящее время в области металлообработки определилось направление, связанное со снижением припусков и расширением объема финишных операций. Снижение припусков позволяет экономить материальные ресурсы на изготовление деталей и машин, а всевозрастающие требования к точности и качеству обработанных поверхностей определяют тенденцию к использованию финишных операций, особенно когда речь идет о высокой точности обработки. Среди финишных операций достойное место занимает магнитно-абразивная обработка (МАО), являясь высокопроизводительным методом обработки металлов. Она позволяет при наименьших съемах материала наиболее активно воздействовать на обрабатываемую поверхность и управлять микрогеометрией и физическим состоянием поверхностных слоев материала изделия. При этом обеспечиваются их максимальная износостойкость и усталостная прочность.

В основе процесса магнитно-абразивной обработки лежит механический и механохимический съем металла и его окислов с поверхности обрабатываемой заготовки детали, а также сглаживание микронеровиостей путем их пластического деформирования зернами магнитно-абразивного порошка, которые под воздействием постоянного магнитного поля увеличивают свою плотность и прижимаются к обрабатываемой поверхности, совершающей относительное движение. Подача СОЖ в зону обработки, которая в данном процессе выступает как носитель поверхностно-активных веществ, а не как средство охлаждения детали, обеспечивает возникновение процесса электролиза, в результате которого растворяются поверхностный слой материала детали и ферромагнитная основа зерен порошка. Анодное растворение поверхности металла обрабатываемой заготовки детали влияет на съем металла, а растворение ферромагнитной основы зерен порошка обеспечивает вскрытие абразивных частиц и способствует увеличению их режущей способности.

Процесс обработки способом МАО носит характер избирательного и ориентированного абразивного микрорезания и микровыглаживания. Сущность избирательного абразивного микрорезания состоит в том, что при сравнительно больших величинах микровыступов зерна порошка контактируют преимущественно с вершинами гребешка, которые являются концентраторами магнитных силовых линий. Каждый рабочий элемент (зерно) в магнитном поле устанавливается своей наибольшей осью по направлению магнитных силовых линий, т.е. к обрабатываемой поверхности. При износе и затуплении вершин в процессе обработки происходит переориентация элемента таким образом, что вновь образовавшаяся наибольшая ось направляется вдоль магнитных силовых линий. В результате этого обработка поверхности заготовки проводится острыми кромками, т.е. имеет место процесс ориентированного абразивного резания.

Поскольку при МАО связкой абразивного инструмента является энергия магнитного поля электромагнита, способная удерживать зерна порошка (инструмента) в подвижно-связанном состоянии, а также координировать их относительно обрабатываемой поверхности, то появляется возможность существенным образом поменять условия полирования.

Особенности метода МАО: непрерывный контакт порошка с обрабатываемой поверхностью заготовки детали, что снижает циклические нагрузки па систему станок - приспособление - инструмент - деталь и способствует повышению точности геометрических размеров и формы обрабатываемой поверхности; отсутствие жесткого крепления абразивного зерна в связке, которое способствует самопроизвольному нивелированию режущего инструмента относительно формы обрабатываемой поверхности и устраняет вероятность появления в зоне резания критических давлений и температур; повышение физико-механических показателей качества поверхностного слоя материала изделия; возможность управления жесткостью инструмента и за счет этого обеспечение регулирования съема металла с формообразующей поверхности изделия; отсутствие трения связки о поверхность изделия, существенно снижающего температуру в зоне абразивной обработки; возможность резания наиболее острой кромкой зерна магнитно-абразивного порошка (при этом не требуется периодическая перезаточка инструмента); осуществление размерной или безразмерной (декоративной) обработки, обеспечивающей за 10... 120 с съем металла 0,02...0,50 мм на диаметр; снижение шероховатости c Ra = 1,25...0,32 до Ra - - 0,08...0,01 мкм или с Ra - = 10,0... 2,5 до Ra - 0,32... 0,08 мкм; сохранение геометрических размеров в пределах допуска, оставленного для операции шлифования; исключение засаливания инструмента, что позволяет полировать мягкие и вязкие материалы, такие, как медь, алюминий, титан.

Рис. 9.1.

На рис. 9.1 представлена схема МАО на примере обработки цилиндрических деталей. Обрабатываемая заготовка детали 1 помещается между полюсными наконечниками 2 электромагнита 3 с некоторыми зазорами, в которые подается порошок 4, обладающий магнитными и абразивными свойствами. Механическим приводом заготовке детали сообщаются вращательное движение и осциллирующее вдоль оси. Силами магнитного поля зерна порошка удерживаются в рабочих зазорах, прижимаются к поверхности заготовки детали и производят ее обработку. В рабочие зазоры подается СОЖ (эмульсия, керосин и т.д.). В данном случае функции силового источника и упругой связки выполняет энергия постоянного магнитного поля. Степень упругости «магнитной» связки легко регулируется изменением напряженности магнитного поля, что позволяет процессу МАО приближаться к шлифованию связанным или свободным абразивом и тем самым использовать преимущества первого и второго в одном рабочем цикле.

Магнитно-абразивная обработка

Резюме. Рассмотрены вопросы разработки технологий и создания оборудования для финишной обработки поверхностей с использованием магнитно-абразивного метода. Показана возможность его применения как для простых, так и сложных по форме деталей из различных материалов - металлов и сплавов, керамики, монокристаллов и др. Ключевые слова: магнитно-абразивная обработка, полирование, формообразование.

Компания «Полимаг» имеет большой опыт разработки оригинальных эффективных технологий и создания специального оборудования различной степени сложности для финишной обработки (чаще всего магнитно-абразивной) изделий, применяемых в машино- и приборостроении, оптической, электронной и других отраслях промышленности.

Процесс магнитно-абразивной обработки (МАО) осуществляет ферроабразивный порошок, уплотненный магнитным полем. Принципиальное отличие МАО от традиционных абразивных методов - отсутствие связки, что позволяет формировать режущий контур из абразивных элементов непосредственно у поверхности, а количество рабочих микро- и субмикроэлементов на единицу площади при этом во много раз больше, чем при шлифовании. В то же время при МАО преобладают процессы субмикроцарапания, упругопла-стического сдвига металла и микровыглаживания поверхности,

Николай Хомич,

директор научно-инженерного предприятия «Полимаг», кандидат технических наук

значения нагрева и давления в зоне обработки значительно ниже. Температура в месте контакта ферроабразивного зерна и детали не превышает 150 °C, не образуются дефекты, свойственные абразивной обработке. При МАО очень важна роль применяемого импульсного магнитного поля. Оно вызывает проявление в приповерхностном слое образца магнитно-пластического, магнитоэлектрического и магнитострикционного эффектов. Под их воздействием приводятся в движение (подобное броуновскому) слабозакрепленные дефекты структуры (дислокации, дисклинации, ротации и др.), образовавшиеся в ходе предше-

ствующей операции обработки детали. Значительная их часть выходит на поверхность, а «мягкая щетка» из ферроабразивного порошка формирует нанорельеф с незначительной шероховатостью и приповерхностный слой с минимумом дефектов структуры - потенциальных очагов разрушения материала детали.

Метод отличается высокой универсальностью и простотой реализации и обслуживания. Благодаря различным конструктивным исполнениям элементов рабочей зоны и широкому выбору кинематических схем можно успешно обрабатывать как простые, так и сложные по форме поверхности - цилиндрические наружные и внутренние, плоские, тел вращения с криволинейной образующей, винтовые с различным профилем, сложнофасонные и др. При этом возможность использования разнообразных по составу и свойствам технологических сред в процессе МАО позволяет обрабатывать изделия из различных материалов в широком

Наномир структур и явлений

диапазоне - металлы и сплавы, керамику, монокристаллы и др.

В зависимости от предъявляемых требований магнитно-абразивным способом можно осуществлять полирование или зачистку детали, а также модификацию приповерхностного слоя. Магнитно-абразивное полирование (МАП) обеспечивает качественную поверхность с низкой шероховатостью (от микро-до наноуровня) с минимальным количеством дефектов структуры. В свою очередь зачистка удаляет загрязнения и изначальную окисную пленку, формируя взамен нее аналогичную тонкую новую, которая с течением времени практически не растет и предохраняет основной материал от коррозии. Магнитно-абразивная модификация создает барьерный приповерхностный слой путем внесения в него определенных легирующих элементов и обеспечения оптимального напряженно-деформированного состояния.

Таким образом, метод МАО может обеспечивать требуемое качество и специальные эксплуатационные свойства поверхности изделий - сопротивление коррозии, износу и механическому разрушению.

На предприятии «Полимаг» большое внимание уделяется исследованиям и разработкам в области супертонкой обработки деталей оптики, лазерной техники и микроэлектроники.

Для магнитно-абразивного полирования плоских, сферических и асферических поверхностей с целью улучшения макрогеометрии и снижения шероховатости создана программно управляемая установка модели А09 (рис. 1). Основные ее технические характеристики приведены в табл. 1.

Параметры МАП вводятся в ЧПУ установки А09 по данным интерферограммы исходной (механически полированной)

Диаметр обрабатываемой детали, мм 10...100

Толщина обрабатываемой детали, мм 0,5.. .30,0

Частота вращения магнитного индуктора, с-1 5.25

Шероховатость после МАП, Рэ, нм < 2

Точность формы обработанной детали, мкм 0,01.0,05

Время обработки, мин 3. 15

Потребляемая мощность, кВт 1,5

Габаритные размеры ДхШхВ, мм 700x600x500

Масса, кг 80

поверхности. Процесс осуществляется путем автоматического сканирования образца эластичным магнитно-абразивным инструментом, а съем материала происходит избирательно на выступающих участках поверхности. Например, МАП плоской пластины из оптического стекла диаметром 28 мм позволило за 6 мин. снизить параметр макрогеометрии РУ с 158 нм до 30 нм и уменьшить шероховатость с 20 до 1,4 нм.

В 2015 г. запланировано завершить работы по созданию установки А14, превосходящей по технологическим возможностям установку А09 и позволяющей полировать детали размерами от 20х20 до 200х200 мм с обеспечением Б.а < 1 нм (для отдельных задач Б.а < 0,2 нм).

Общий вид установки А14 представлен на рис. 2.

На предприятии разработаны и реализованы на практике технологии и оборудование для магнитно-абразивной обработки (модификация, полирование) наружных и внутренних поверхностей труб из циркониевых сплавов диаметром 6-15 мм -оболочек тепловыделяющих элементов атомных реакторов. Основная задача - повышение коррозионной стойкости и качества поверхности, а также замена традиционно используемого процесса травления труб во фтористо-водородных растворах, применение которых экологически небезопасно. Исследования процесса магнитно-абразивной

модификации циркониевых компонентов, в том числе реакторные испытания модифицированных оболочек твэлов, показали перспективность его промышленного применения в атомном машиностроении. Разработанная технология и установка Т15 (рис. 3) используются в Инсти-

Основные

технические

характеристики

установки

Рис. 1. Установка А09

Рис. 3. Рабочий модуль установки Т15

Табл. 2. Основные технические характеристики установки Т15

VO Установки

"Z для магнитно-

2 S абразивной

< сс О обработки

Наименование показателя Значение показателя

Диаметр обрабатываемой детали, мм 6...15

Длина обрабатываемой детали, м 0,7...5

Шероховатость после МАП, Ра, мкм < 0,2

Размерный съем металла, мкм 10.30

Скорость обработки, м/мин 0,5.1,5

Потребляемая мощность, кВт 2,5

Габаритные размеры ДхШхВ, м 11,5x0,6x1,3

Масса, кг 200

туте промышленных ядерных технологий Национального исследовательского ядерного университета «МИФИ», а также проходят апробацию на предприятиях Росатома. Технические характеристики установки Т15 приведены в табл. 2.

Заслуживает внимания установка МК12 (рис. 4 а) для магнитно-абразивного полирования сложных поверхностей компрессорных лопаток из титановых сплавов и жаропрочных сталей. Основными задачами здесь являются повышение эксплуатационных свойств лопаток - сопротивления коррозии, эрозии и знакопеременным механическим нагрузкам, что будет способствовать повышению безопасности эксплуатации летательных аппаратов, а также замена ручного труда рабочих на финишных операциях обработки данных изделий. Указанные технология и устройства используются компанией «Мелита-К» (Казань, Россия), а также планируется их внедрение на предприятиях Минавиапрома Российской Федерации.

Разработаны и применяются в производстве технология и установка П12 (рис. 4 б) для магнитно-абразивного полирования торцевых поверхностей пуансонов из инструментальных сталей для прессования таблеток из сыпучих материалов, в том числе лекарственных препаратов. Основная задача - повышение качественных характеристик рабочих поверхностей, а также автоматизация процесса. Данные технология и оборудование используются на предприятии «Точная механика» (Минск) в производстве пуансонов различного применения.

Установка М14 (рис. 4 в) осуществляет магнитно-абразивную зачистку кромок изделий из алюминиевых и других сплавов перед сваркой. В ходе операций удаляются оксидные пленки, формируется поверхность с минимумом дефектов структуры и высокой коррозионной стойкостью. Обработанные детали с течением времени практически не окисляются и пригодны к сварке в течение 30 суток и более (в случае подготовки химическим травлением этот срок составляет лишь 8 часов). Установка содержит 3 наладки,

позволяющие помимо зачистки кромок полировать плоские и цилиндрические поверхности.

Проводятся исследования и разрабатываются способ и установка для магнитно-абразивного полирования твердосплавных сменных многогранных пластин с наконечниками из кубического нитрида бора с целью обеспечения заданного радиуса округления режущей кромки и повышения качества всей поверхности пластины перед нанесением покрытий. В этой технологии заинтересованы многие предприятия, изготавливающие инструменты различного назначения.

Также ведутся работы по созданию способов и устройств для магнитно-абразивного полирования внутренних поверхностей волноводных труб из медных сплавов СВЧ-устройств РЛС. Внедрение данной технологии и оборудования планируется на предприятиях концерна ПВО «Алмаз-Антей» (Россия).

Организовано производство по изготовлению технологических сред (ферроабразивных порошков, абразивных суспензий) для магнитно-абразивной обработки различных материалов, завершается создание опытно-промышленного участка по серийному выпуску оборудования.

В настоящее время компанией «Полимаг» выполняются НИОКР, развивается сотрудничество с заказчиками из стран СНГ, ЕС, а также из Китая. СИ

See: http://innosfera.by/2015/06/ Magnetic_abrasive_machining

Магнито-абразивная обработка (МАО) - абразивная обработка, осуществляемая при движении заготовки и абразивных зерен относительно друг друга в магнитном поле (ГОСТ 23505-79).

Сущность магнитно-абразивной обработки состоит в удалении припуска преимущественно абразивным способом с созданием магнитного поля непосредственно в зоне резания. В зависимости от схемы МАО роль магнитного поля заключается: в формировании из магнитно-абразивного порошка абразивного инструмента (АИ) и в удерживании этого порошка в зоне резания; в создании сил резания; в придании АИ или заготовке рабочих движений.

Магнитно-абразивный порошок - шлифовальный порошок, обладающий магнитными и абразивными свойствами.

Магнитно-абразивный порошок получается следующим образом. Порошок электрокорунда смешивается с мелким железным порошком; из этой смеси прессуются брикеты, которые затем обжигаются в печи. Обожженные брикеты размалываются, и зерно полученного порошка представляет спеченные железные (более крупные) и элек- трокорундовые (более мелкие) частицы. Размеры магнитно-абразивных частиц - 100-200 мкм.

Магнитное поле создает электрические токи в поверхностном слое движущейся заготовки и ее поверхность приобретает электрическую зараженность. Это активизирует электрохимические процессы на обрабатываемой поверхности и действие ПАВ, содержащихся смазочноохлаждающих технических жидкостей (СОТЖ), вызывает изменения структуры поверхностного слоя заготовки и его механических свойств. Соответственно МАО относят к ЭХФКМО (электро-физико-химические комбинированные методы обработки), основанным на комбинированном воздействии на заготовку электрофизических, электрохимических и механических факторов.

В качестве АИ используют магнитно-абразивные порошки и магнитно-реологические жидкости с абразивным наполнителем. На практике получили распространение виды МАО с применением порошка, размещенного на активной поверхности магнитного индуктора (МИ), в рабочем зазоре или рабочей зоне (рис. 8.12).

Сформированный из магнитно-абразивного порошка инструмент позволяет производить обработку поверхностей сложной формы без фасонных полюсов (полюсных наконечников) МИ при простой кинематике процессов. Заготовке, МИ или порошку сообщают следующие рабочие движения: главное движение п, определяющее скорость резания и; движение подачи, которое используют для распространения обработки на всю поверхность заготовки или для обеспечения равномерного съема на всех ее участках; и движение осцилляции, позволяющее получить пересекающиеся траектории зерен порошка на обрабатываемой поверхности и способствующее перемешиванию (самозатачиваемости) зерен порошка в рабочем зазоре; дополнительное движение, сообщаемое заготовке в рабочей зоне (или рабочей зоне относительно заготовки) и позволяющее повысить давление порошка на обрабатываемую поверхность.

Схема магнитно-абразивной обработки:

1,2 - полюс магнитного индуктора; 3 - заготовка; 4 - магнитноабразивный порошок; 5 - дозаторы для подачи магнитно-абразивного порошка; 6 - подача СОТЖ; 8 - рабочий зазор.

Скорость вращения заготовки и = 0,5-1,5 м/с, время обработки - 30-45 с, размер зазора в = 1,2-1,5 мм.

Независимо от характера магнитного поля, созданного МИ в рабочей зоне, это поле по отношению к каждому элементу объема движущейся заготовки носит переменный характер. Воздействие переменного магнитного поля на закаленные стали придает обработанным поверхностям повышенные эксплуатационные свойства: износостойкость, коррозионную стойкость, контактную долговечность. Магнитно-абразивной обработке подвергают ферромагнитные и немагнитные материалы с широким диапазоном физико-механических свойств. Области применения МАО:

  • удаление заусенцев;
  • скругление острых кромок;
  • полирование режущей части инструмента;
  • удаление окалины с проката;
  • очистка печатных плат от оксидов;
  • получение рельефного изображения;
  • обработка отверстий;
  • упрочнение поверхностей.

Классификация процессов МАО основана на разнообразии форм и размеров обрабатываемых заготовок и их свойств, а также видов производства. Это вызвало появление разнообразных способов и устройств для осуществления МАО, отличающихся кинематикой, конструкцией МИ, характером используемого магнитного поля и технологическими возможностями.

Различный характер магнитного поля в рабочей зоне (рабочем зазоре) создается с помощью магнитных индукторов (МИ) и электромагнитных индукторов (ЭМИ), а также индукторов на постоянных магнитах (ИМИ).

При МАО удаление припуска осуществляется абразивным резанием, снятием образующихся химических пленок и сопровождается пластическим выглаживанием обрабатываемой поверхности. Абразивному резанию и пластическому выглаживанию способствуют ПАВ, содержащиеся в СОТЖ, действие которых в условиях МАО проявляется сильнее, чем при абразивной обработке.

МАО позволяет получить шероховатость Ra = 0,3- 0,4 мкм на поверхностях после точения и Ra = 0,08- ОД мкм - после шлифования.

СМАЗОЧНО-ОХЛАЖДАЮЩИЕ ТЕХНОЛОГИЧЕСКИЕ ЖИДКОСТИ (СОТЖ)

Отличительной функцией СОТЖ при МАО являются интенсификация съема металла заготовки с помощью химически активных и поверхностно-активных добавок; влияние на подвижность зерен порошка в рабочем зазоре и его способность к самозатачиваемости; влияние на структурную приспособляемость поверхностного слоя обрабатываемого материала к абразивному воздействию; предотвращение адгезии продуктов разрушения при МАО на обрабатываемой поверхности. Рекомендуемые составы СОТЖ при МАО приведены в таблице 8.5.

Обрабатываемый материал

Компоненты

Сталь углеродистая, коне-

Триэтаноламин

трукционная и легирован-

Олеиновая кислота

пая (в состоянии поставки

и термообработанные)

Триэтаноламин

Олеиновая кислота

Чугун серый, высокопроч-

Мылонафт

ный и ковкий

Эмульгатор ОП-7

Тринатрийфосфат

Нитрит натрия

Медь, бронза, латунь

Триэтаноламин Олеиновая кислота

и алюминиевые сплавы

Глицерин

Примечание. Во всех составах вода - остальное.

МАГНИТНЫЕ ИНДУКТОРЫ

В состав МИ кроме источника поля - намагничивающей катушки или постоянных магнитов - входят следующие элементы: магнитопроводы, обеспечивающие прохождение и замыкание магнитного потока по кратчайшему пути с наименьшим магнитным сопротивлением; механизмы для изменения размеров рабочей зоны или рабочего зазора; механизмы или электромагнитные средства для сообщения полюсам МИ рабочих движений; механизмы для регулирования напряженности магнитного поля (для индукторов на постоянных магнитах).

ОБЛАСТИ ПРИМЕНЕНИЯ МАГНИТНО-АБРАЗИВНОЙ ОБРАБОТКИ

Области применения магнитно-абразивной обработки следующие:

  • полирование нежестких деталей (оси, штоки большой длины и малого диаметра);
  • полирование больших плоских поверхностей (торцы дисков большого диаметра);
  • обработка деталей сложного профиля с небольшим перепадом размеров профиля.

Имеется ряд специальных станков для магнитно-абразивной обработки. Используются также универсальные станки (токарные, фрезерные, карусельные), оснащенные специальными приспособлениями с электромагнитами и устройствами подачи магнитно-абразивного порошка.

Одним из новых перспективных способов отделочной обработки является магнитно-абразивное полирование (МАП), позволяющее на разнообразных по физико-механическим свойствам материалах (сталях, твердых сплавах, цветных металлах и сплавах, стекле и других неметаллах) получать низкие параметры шероховатости поверхности с высотой микронеровностей 0,05-0,4 мкм и благоприятными для эксплуатации другими характеристиками. Роль режущего инструмента при МАП выполняют магнитно-абразивные порошки, обладающие одновременно высокими магнитными и режущими свойствами. Гамма таких порошковых материалов создана в СССР и изготовляется промышленным способом. Силы резания создаются с помощью магнитного поля, воздействующего на зерна магнитно-абразивного порошка, размещенного между полюсами магнитного индуктора и обрабатываемой поверхностью.

Сущность МАП заключается в том, что обрабатываемой поверхности детали или порошку с магнитными и абразивными свойствами, помещенными в магнитное поле, сообщают принудительное движение относительно друг друга. Съем металла осуществляется в результате силового воздействия порошка на поверхность детали и указанных относительных движений.

Многообразие геометрических форм поверхностей, требующих отделочной обработки, и широкие возможности магнитных полей, способных выполнять в процессе абразивной обработки различные функции, привели к созданию различных схем магнитно-абразивного полирования. В частности, на рисунке 3.50 показаны некоторые схемы полирования деталей. В этом случае магнитное поле формирует из порошковой ферромагнитной абразивной массы 3 своеобразный режущий инструмент, воспроизводящий форму обрабатываемой поверхности, и создает нормальные и тангенциальные силы, прижимающие зерна порошка к детали 1 и удерживающие их в рабочем зазоре. Движения резания обрабатываемой детали сообщаются обычным электромеханическим способом. Кроме вращения детали, являющегося в этой схеме главным движением резания, детали или полюсам электромагнитов 2 может быть сообщена осцилляция вдоль оси вращения.

Силы резания независимо от схемы полирования создаются магнитным полем, а величина и направление этих сил определяются напряженностью и структурой поля в рабочем пространстве.

Рис. 3.50. Схемы полирования деталей.

На величину сил резания можно влиять, изменяя силу тока в обмотках электромагнитов, величину зазоров между деталью и полюсами электромагнита, а также структуру поля в рабочем пространстве, которая в известной мере определяется конфигурацией полюсов электромагнитов и размерами межполюсного пространства.

Особенностями магнитно-абразивного полирования являются устранение динамических нагрузок абразивных зерен при резании абразивным инструментом и появление в результате этого вспышек высоких критических температур в локальных зонах обрабатываемой поверхности, отсутствие трения связки о детали и резкое уменьшение общей температуры резания, отсутствие необходимости периодической фасонной правки абразивного инструмента и отсутствие вообще необходимости изготовления абразивного инструмента на жесткой связке.


Многократное пространственное перемагничивание обрабатываемой поверхности детали и силовое воздействие зерен порошка на нее способствует упрочнению тонкого поверхностного слоя материала, увеличению микротвердости и износостойкости, снижению величины растягивающих остаточных напряжений.

МАП предусматривает работу с относительно невысокими скоростями вращения (1-3 м/с) детали, малыми амплитудами (0,5-2 мм) осцилляции при магнитной индукции в рабочем зазоре 1-2 Т и зернистости порошка 0,2 мм.

МАП снижает шероховатость обрабатываемой поверхности с Ra = 1,25-0,32 до Ra = 0,08-0,02 мкм или с Rz = 40-10 до Ra = 0,32- 0,16 мкм, улучшает отдельные характеристики точности геометрической формы детали: уменьшает волнистость и гранность; обеспечивает высокую для отделочных операций интенсивность удаления металла (до 1 мкм/с на диаметр; за 10-50 с магнитного времени съем составляет 0,01-0,05 мм), сохранение размеров, полученных в результате предшествующей операции, в пределах допуска, повышение контактной прочности и износостойкости деталей в 1,5-2 раза. Обработка деталей при МАП ведется в основном поштучно в ориентированном состоянии.

Практическое применение метод МАП в настоящее время получил преимущественно при обработке наружных и внутренних поверхностей тел вращения (плунжеров, осей и др.) для полирования плоскостей.

Централизованного производства оборудования для магнитно-абразивного полирования в настоящее время нет, и поэтому для применения этого процесса могут быть с некоторой модернизацией приспособлены токарные, фрезерные, шлифовальные станки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.